Helper to augment graph with additional deps (#163959)

In comm-compute overlap we will have a graph with:

```
def foo(...):
     ag = all_gather(...)
     hiding_compute = mm(...)
     wait(ag)
```

There is no explicit dependency between the hiding compute and the collectives, but we want to add implicit dependencies from wait->hiding_compute, and from hiding_compute->all_gather to preserve overlap.

Additionally, while bucketing, we will merge collective starts and collective waits together. In this case, we will want to treat the two nodes as a single subgraph - each node in the merged set will have the union of all deps in the set.

This pr adds `AugmentedGraphHelper` that adds the apis, and allows querying for dependency with this augmented graph.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163959
Approved by: https://github.com/v0i0, https://github.com/IvanKobzarev
ghstack dependencies: #163215, #163754
This commit is contained in:
eellison
2025-09-29 09:56:10 -07:00
committed by PyTorch MergeBot
parent 6db1b9dd21
commit b5d4d350f5
3 changed files with 470 additions and 4 deletions

View File

@ -0,0 +1,346 @@
# Owner(s): ["module: inductor"]
import operator
import torch
import torch.fx as fx
from torch._inductor.augmented_graph_helper import AugmentedGraphHelper
from torch.testing._internal.common_utils import TestCase
class TestAugmentedGraphHelper(TestCase):
"""Test suite for AugmentedGraphHelper dependency and merge management."""
def setUp(self):
"""Create a simple graph structure for testing."""
# Create a torch.fx.Graph with multiple nodes
self.graph = fx.Graph()
# Create placeholder nodes (inputs)
self.x = self.graph.placeholder("x")
self.y = self.graph.placeholder("y")
# Create computation nodes with specific names for easy reference
self.node_a = self.graph.call_function(
torch.add, args=(self.x, self.y), name="A"
)
self.node_b = self.graph.call_function(
torch.mul, args=(self.node_a, self.x), name="B"
)
self.node_c = self.graph.call_function(
torch.sub, args=(self.node_a, self.y), name="C"
)
self.node_d = self.graph.call_function(
torch.div, args=(self.node_b, self.node_c), name="D"
)
self.node_e = self.graph.call_function(
operator.neg, args=(self.node_d,), name="E"
)
self.node_f = self.graph.call_function(torch.abs, args=(self.node_e,), name="F")
self.node_g = self.graph.call_function(
torch.relu, args=(self.node_f,), name="G"
)
self.node_h = self.graph.call_function(
torch.sigmoid, args=(self.node_g,), name="H"
)
# Create output
self.graph.output(self.node_h)
# Create a mapping of nodes by name for easier access in tests
self.nodes = {}
for node in self.graph.nodes:
if hasattr(node, "name") and node.name in [
"A",
"B",
"C",
"D",
"E",
"F",
"G",
"H",
]:
self.nodes[node.name] = node
# Get all nodes and create tracker
self.all_nodes = list(self.graph.nodes)
self.tracker = AugmentedGraphHelper(self.graph)
def get_deps(self, node):
"""Helper to get dependencies for a node."""
return list(getattr(node, "args", []))
# ========== Basic Functionality Tests ==========
def test_initial_state(self):
"""Test that nodes start as singletons."""
for node in self.all_nodes:
merge_set = self.tracker.merge_sets[node]
self.assertEqual(merge_set, {node})
self.assertEqual(len(merge_set), 1)
def test_simple_merge(self):
"""Test merging two nodes."""
node_a = self.nodes["A"]
node_b = self.nodes["B"]
self.merge_nodes(self.tracker, [node_a, node_b])
# Both should be in same merge set
self.assertEqual(self.tracker.merge_sets[node_a], {node_a, node_b})
self.assertEqual(self.tracker.merge_sets[node_b], {node_a, node_b})
self.assertEqual(
self.tracker.merge_sets[node_a], self.tracker.merge_sets[node_b]
)
def test_transitive_merge(self):
"""Test merging already merged nodes."""
node_a = self.nodes["A"]
node_b = self.nodes["B"]
node_c = self.nodes["C"]
node_d = self.nodes["D"]
# Merge A-B and C-D separately
for node in node_b, node_c, node_d:
self.tracker.merge_to_set(node_a, node)
expected_set = {node_a, node_b, node_c, node_d}
for node in [node_a, node_b, node_c, node_d]:
self.assertEqual(self.tracker.merge_sets[node], expected_set)
def merge_nodes(self, tracker, nodes):
for n in nodes[1:]:
tracker.merge_to_set(nodes[0], n)
def test_unmerge_node(self):
"""Test removing a node from its merge set."""
node_a = self.nodes["A"]
node_b = self.nodes["B"]
node_c = self.nodes["C"]
# Merge all three
self.merge_nodes(self.tracker, [node_a, node_b, node_c])
self.assertEqual(len(self.tracker.merge_sets[node_a]), 3)
# Unmerge B
self.tracker.unmerge_node(node_b)
# B should be singleton
self.assertEqual(self.tracker.merge_sets[node_b], {node_b})
# A and C should still be together
self.assertEqual(self.tracker.merge_sets[node_a], {node_a, node_c})
self.assertEqual(self.tracker.merge_sets[node_c], {node_a, node_c})
def test_unmerge_from_singleton(self):
"""Test unmerging a node that's already singleton."""
node_a = self.nodes["A"]
# Should be no-op
self.tracker.unmerge_node(node_a)
self.assertEqual(self.tracker.merge_sets[node_a], {node_a})
# ========== Dependency Propagation Tests ==========
def test_merged_deps_collection(self):
"""Test that dependencies are collected from all merged nodes."""
node_a = self.nodes["A"]
node_b = self.nodes["B"]
node_c = self.nodes["C"]
# B already depends on A (and x) from graph construction
# C already depends on A (and y) from graph construction
# Merge B and C
self.merge_nodes(self.tracker, [node_b, node_c])
# Get merged deps for B - should include deps from both B and C
deps = self.tracker.get_merged_deps(node_b)
# Should include all dependencies from both nodes
self.assertIn(node_a, deps) # From both B and C
self.assertIn(self.x, deps) # From B
self.assertIn(self.y, deps) # From C
def test_extra_deps_with_merge(self):
"""Test extra dependencies work correctly with merged nodes."""
node_a = self.nodes["A"]
node_b = self.nodes["B"]
node_c = self.nodes["C"]
node_d = self.nodes["D"]
# Add extra dep from A to C
self.tracker.add_extra_dep(n=node_a, dep=node_c)
# Merge A and B
self.merge_nodes(self.tracker, [node_a, node_b])
# Add extra dep from D to the merged node (via B)
self.tracker.add_extra_dep(n=node_d, dep=node_b)
# D should depend on B through extra deps
deps = self.tracker.get_merged_deps(node_d)
self.assertIn(node_b, deps)
# A should still have its dep on C
deps = self.tracker.get_merged_deps(node_a)
self.assertIn(node_c, deps)
# ========== Path Finding Tests ==========
def test_has_path_direct(self):
"""Test path finding for direct dependencies."""
# In our graph: B depends on A
node_a = self.nodes["A"]
node_b = self.nodes["B"]
self.assertTrue(self.tracker.has_path(node_a, node_b))
self.assertFalse(self.tracker.has_path(node_b, node_a))
def test_has_path_transitive(self):
"""Test path finding through multiple nodes."""
# In our graph: A -> B -> D and A -> C -> D -> E
node_a = self.nodes["A"]
node_e = self.nodes["E"]
self.assertTrue(self.tracker.has_path(node_a, node_e))
self.assertFalse(self.tracker.has_path(node_e, node_a))
def test_has_path_through_merge(self):
"""Test path finding when nodes are merged."""
# Create a new graph for this specific test
graph2 = fx.Graph()
x2 = graph2.placeholder("x")
a2 = graph2.call_function(torch.neg, args=(x2,), name="A2")
b2 = graph2.call_function(torch.abs, args=(a2,), name="B2")
c2 = graph2.call_function(torch.relu, args=(x2,), name="C2")
d2 = graph2.call_function(torch.sigmoid, args=(c2,), name="D2")
graph2.output(d2)
tracker2 = AugmentedGraphHelper(graph2)
# Initially no path from B2 to D2
self.assertFalse(tracker2.has_path(b2, d2))
# Merge B2 and C2
tracker2.merge_to_set(b2, c2)
# Now there should be a path B2/C2 -> D2
self.assertTrue(tracker2.has_path(b2, d2))
def test_has_path_with_extra_deps(self):
"""Test path finding with extra dependencies."""
graph2 = fx.Graph()
x2 = graph2.placeholder("x")
a2 = graph2.call_function(torch.neg, args=(x2,), name="A2")
b2 = graph2.call_function(torch.abs, args=(a2,), name="B2")
c2 = graph2.call_function(torch.relu, args=(x2,), name="C2")
d2 = graph2.call_function(torch.sigmoid, args=(c2,), name="D2")
graph2.output(d2)
tracker2 = AugmentedGraphHelper(graph2)
# Initially no path from B2 to D2
self.assertFalse(tracker2.has_path(b2, d2))
tracker2.add_extra_dep(n=c2, dep=b2)
# Now there should be a path B2/C2 -> D2
self.assertTrue(tracker2.has_path(b2, d2))
# ========== Cycle Detection Tests ==========
def test_no_cycle_in_dag(self):
"""Test that DAG has no cycles."""
# Our original graph is a DAG, should have no cycles
self.assertFalse(self.tracker.has_cycle())
def test_simple_cycle_detection(self):
"""Test detection of simple cycle."""
# Create a graph with a cycle
graph3 = fx.Graph()
x3 = graph3.placeholder("x")
# We can't create true cycles in fx.Graph directly,
# but we can simulate with extra_deps
a3 = graph3.call_function(torch.neg, args=(x3,))
b3 = graph3.call_function(torch.abs, args=(a3,))
c3 = graph3.call_function(torch.relu, args=(b3,))
graph3.output(c3)
tracker3 = AugmentedGraphHelper(graph3)
self.assertFalse(tracker3.has_cycle())
# Add extra dep to create cycle: a3 -> c3
tracker3.add_extra_dep(n=a3, dep=c3)
self.assertTrue(tracker3.has_cycle())
def test_cycle_through_merge(self):
"""Test that merging can create cycles."""
# Create specific graph for this test
graph4 = fx.Graph()
x4 = graph4.placeholder("x")
a4 = graph4.call_function(torch.neg, args=(x4,))
b4 = graph4.call_function(torch.abs, args=(a4,))
c4 = graph4.call_function(torch.relu, args=(x4,))
d4 = graph4.call_function(torch.sigmoid, args=(c4,))
graph4.output(d4)
tracker4 = AugmentedGraphHelper(graph4)
# Add extra dep d4 -> a4
tracker4.add_extra_dep(n=a4, dep=d4)
# Now: a4 -> b4, c4 -> d4 -> a4
# Merging b4 and c4 would create cycle
tracker4.merge_to_set(b4, c4)
self.assertTrue(tracker4.has_cycle())
def test_cycle_with_extra_deps(self):
"""Test cycle detection with extra dependencies."""
node_a = self.nodes["A"]
node_b = self.nodes["B"]
# B already depends on A naturally
# Add reverse dependency to create cycle
self.tracker.add_extra_dep(n=node_a, dep=node_b)
self.assertTrue(self.tracker.has_cycle())
def test_multiple_merge_unmerge(self):
"""Test sequence of merge and unmerge operations."""
nodes = [self.nodes[c] for c in ["A", "B", "C", "D", "E"]]
# Merge A, B, C
self.merge_nodes(self.tracker, nodes[:3])
self.assertEqual(len(self.tracker.merge_sets[nodes[0]]), 3)
# Merge D, E
self.merge_nodes(self.tracker, nodes[3:5])
self.assertEqual(len(self.tracker.merge_sets[nodes[3]]), 2)
# Merge the two groups via B and D
try:
self.merge_nodes(self.tracker, [nodes[1], nodes[3]])
thrown = False
except AssertionError:
thrown = True
self.assertTrue(thrown)
# Unmerge C
self.tracker.unmerge_node(nodes[2])
self.assertEqual(len(self.tracker.merge_sets[nodes[0]]), 2)
self.assertEqual(self.tracker.merge_sets[nodes[2]], {nodes[2]})
# Unmerge A
self.tracker.unmerge_node(nodes[0])
self.assertEqual(self.tracker.merge_sets[nodes[0]], {nodes[0]})
self.assertEqual(len(self.tracker.merge_sets[nodes[1]]), 1)
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
run_tests()

View File

@ -324,10 +324,11 @@ def _create_subgraph(
return subgraph, external_node_usages, node_usage_to_tuple_elems, ind_to_tuple_spec
def _stable_topological_sort(
def _stable_topological_sort_impl(
graph: torch.fx.Graph,
node_to_additional_deps: dict[Node, OrderedSet[Node]],
) -> None:
do_sort: bool = True,
) -> bool:
# Nodes are in exactly one of these four collections:
# - Nodes in `pending` are waiting to be processed (in reverse order):
@ -366,7 +367,7 @@ def _stable_topological_sort(
waiting[waiting_for[-1]].append(node)
else:
ready.add(node)
if cursor and cursor.next is not node:
if cursor and cursor.next is not node and do_sort:
cursor.append(node)
cursor = node
# Mark the nodes that have been waiting for this node to finish as
@ -374,7 +375,23 @@ def _stable_topological_sort(
pending.extend(reversed(waiting.pop(node, ())))
ready.update(outputs)
assert not waiting and len(ready) == len(graph.nodes)
return not waiting and len(ready) == len(graph.nodes)
def _stable_topological_sort(
graph: torch.fx.Graph,
node_to_additional_deps: dict[Node, OrderedSet[Node]],
) -> None:
assert _stable_topological_sort_impl(graph, node_to_additional_deps)
def _has_cycle(
graph: torch.fx.Graph,
node_to_additional_deps: dict[Node, OrderedSet[Node]],
) -> bool:
return not _stable_topological_sort_impl(
graph, node_to_additional_deps, do_sort=False
)
def _populate_additional_deps(

View File

@ -0,0 +1,103 @@
from collections import defaultdict
import torch
import torch.fx as fx
from torch.utils._ordered_set import OrderedSet
class AugmentedGraphHelper:
"""
Graph helper that augments the original graph with additional
dependencies and uses, plus tracks node equivalences for coalescing.
TODO: if this becomes too large of compile time, consider binding
graphcycles.cc
"""
def __init__(self, graph: fx.Graph):
# Each node starts in its own singleton set
self.graph = graph
self.merge_sets = {node: OrderedSet([node]) for node in graph.nodes}
# Extra dependencies: node depends on dep (dep must come before node)
self.extra_deps: dict[fx.Node, OrderedSet[fx.Node]] = defaultdict(OrderedSet)
def add_extra_dep(self, *, n: fx.Node, dep: fx.Node) -> None:
"""Add extra dependency: node depends on dep."""
self.extra_deps[n].add(dep)
def merge_to_set(self, existing_node: fx.Node, new_node: fx.Node) -> None:
"""
Merge new_node into existing_node's set. The new node must be a singleton set.
"""
existing_set = self.merge_sets[existing_node]
new_set = self.merge_sets[new_node]
assert len(new_set) == 1
# Add all nodes from new_set to existing_set
existing_set.update(new_set)
# Update all nodes from new_set to point to existing_set
for node in new_set:
self.merge_sets[node] = existing_set
def unmerge_node(self, node: fx.Node) -> None:
"""Remove a node from its merge set, making it singleton."""
old_set = self.merge_sets[node]
# If already singleton, nothing to do
if len(old_set) == 1:
return
# Remove from old set
old_set.remove(node)
# Make node singleton
self.merge_sets[node] = OrderedSet([node])
def get_merged_deps(self, node: fx.Node) -> OrderedSet[fx.Node]:
"""
Get all dependencies of a node considering merges and extra deps.
Combines:
1. Direct deps (all_input_nodes) of node and its merge equivalents
2. Extra deps of node and its merge equivalents
"""
deps: OrderedSet[fx.Node] = OrderedSet()
# For each node in the merge set
for merged_node in self.merge_sets[node]:
# Add direct dependencies from all_input_nodes
deps.update(merged_node.all_input_nodes)
# Add extra dependencies
deps.update(self.extra_deps[merged_node])
return deps
def has_cycle(self) -> bool:
merged_deps = {n: self.get_merged_deps(n) for n in self.graph.nodes}
return torch._dynamo.graph_deduplication._has_cycle(self.graph, merged_deps)
def has_path(self, source: fx.Node, target: fx.Node) -> bool:
"""Check if there's a path from source to target."""
# we should not be checking path from node to itself
assert self.merge_sets[source] is not self.merge_sets[target]
# search backwards from target to source
visited: OrderedSet[fx.Node] = OrderedSet()
queue = [target]
visited.add(target)
while queue:
current = queue.pop()
# Get all dependencies
for dep in self.get_merged_deps(current):
# Check if we reached source or its equivalent
if dep in self.merge_sets[source]:
return True
if dep not in visited:
visited.add(dep)
queue.append(dep)
return False