[BE] Enable Ruff's Flake8 PYI042 (#111114)

Enable [snake-case-type-alias (PYI042)](https://docs.astral.sh/ruff/rules/snake-case-type-alias/)

Link: #110950
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111114
Approved by: https://github.com/albanD
This commit is contained in:
isdanni
2023-10-13 16:33:03 +00:00
committed by PyTorch MergeBot
parent 5db9f911ac
commit b460c30893
17 changed files with 32 additions and 33 deletions

View File

@ -52,7 +52,6 @@ ignore = [
"PYI034",
"PYI036",
"PYI041",
"PYI042",
"PYI045",
"PYI056",
"SIM102", "SIM103", "SIM112", # flake8-simplify code styles

View File

@ -1,9 +1,9 @@
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class Adadelta(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float = ...,
rho: float = ...,
eps: float = ...,

View File

@ -1,9 +1,9 @@
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class Adagrad(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float = ...,
lr_decay: float = ...,
weight_decay: float = ...,

View File

@ -2,7 +2,7 @@ from typing import List, Optional, Union, Tuple
import torch
from torch import Tensor
from .optimizer import (Optimizer, params_t, _use_grad_for_differentiable, _get_value,
from .optimizer import (Optimizer, ParamsT, _use_grad_for_differentiable, _get_value,
_stack_if_compiling, _dispatch_sqrt, _default_to_fused_or_foreach,
_capturable_doc, _differentiable_doc, _foreach_doc, _fused_doc,
_maximize_doc)
@ -13,7 +13,7 @@ __all__ = ['Adam', 'adam']
class Adam(Optimizer):
def __init__(self,
params: params_t,
params: ParamsT,
lr: Union[float, Tensor] = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,

View File

@ -2,12 +2,12 @@ from typing import Optional, Tuple, Union
from torch import Tensor
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class Adam(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: Union[float, Tensor] = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,

View File

@ -1,11 +1,11 @@
from typing import Tuple
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class Adamax(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float = ...,
betas: Tuple[float, float] = ...,
eps: float = ...,

View File

@ -2,7 +2,7 @@ import torch
from torch import Tensor
from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _dispatch_sqrt,
_stack_if_compiling, _capturable_doc, _differentiable_doc, _foreach_doc,
_fused_doc, _maximize_doc, _default_to_fused_or_foreach, params_t)
_fused_doc, _maximize_doc, _default_to_fused_or_foreach, ParamsT)
from typing import List, Optional, Tuple, Union
from torch.utils._foreach_utils import _get_fused_kernels_supported_devices
@ -12,7 +12,7 @@ __all__ = ["AdamW", "adamw"]
class AdamW(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: Union[float, Tensor] = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,

View File

@ -2,12 +2,12 @@ from typing import Optional, Tuple, Union
from torch import Tensor
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class AdamW(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: Union[float, Tensor] = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,

View File

@ -1,9 +1,9 @@
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class ASGD(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float = ...,
lambd: float = ...,
alpha: float = ...,

View File

@ -1,11 +1,11 @@
from typing import Optional
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class LBFGS(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float = ...,
max_iter: int = ...,
max_eval: Optional[int] = ...,

View File

@ -1,11 +1,11 @@
from typing import Tuple
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class NAdam(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float = ...,
betas: Tuple[float, float] = ...,
eps: float = ...,

View File

@ -204,7 +204,7 @@ def register_optimizer_step_post_hook(hook: GlobalOptimizerPostHook) -> Removabl
_global_optimizer_post_hooks[handle.id] = hook
return handle
params_t: TypeAlias = Union[Iterable[torch.Tensor], Iterable[Dict[str, Any]]]
ParamsT: TypeAlias = Union[Iterable[torch.Tensor], Iterable[Dict[str, Any]]]
_P = ParamSpec("_P")
R = TypeVar("R")
@ -236,7 +236,7 @@ class Optimizer:
_optimizer_load_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]'
_optimizer_load_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]'
def __init__(self, params: params_t, defaults: Dict[str, Any]) -> None:
def __init__(self, params: ParamsT, defaults: Dict[str, Any]) -> None:
torch._C._log_api_usage_once("python.optimizer")
self.defaults = defaults
self._optimizer_step_pre_hooks = OrderedDict()

View File

@ -1,11 +1,11 @@
from typing import Tuple
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class RAdam(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float = ...,
betas: Tuple[float, float] = ...,
eps: float = ...,

View File

@ -1,9 +1,9 @@
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class RMSprop(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float = ...,
alpha: float = ...,
eps: float = ...,

View File

@ -1,11 +1,11 @@
from typing import Tuple
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class Rprop(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float = ...,
etas: Tuple[float, float] = ...,
step_sizes: Tuple[float, float] = ...,

View File

@ -1,9 +1,9 @@
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class SGD(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float,
momentum: float = ...,
dampening: float = ...,

View File

@ -1,11 +1,11 @@
from typing import Tuple
from .optimizer import Optimizer, params_t
from .optimizer import Optimizer, ParamsT
class SparseAdam(Optimizer):
def __init__(
self,
params: params_t,
params: ParamsT,
lr: float = ...,
betas: Tuple[float, float] = ...,
eps: float = ...,