Revert "[torchgen] Introduce Executorch types and signatures (#90591)"

This reverts commit ddf00c803b2a99f4eec8a040b53ee18f62800fdd.

Reverted https://github.com/pytorch/pytorch/pull/90591 on behalf of https://github.com/seemethere due to Part of a stack that causes internal failures, see https://www.internalfb.com/intern/sandcastle/job/4503600464398605/insights
This commit is contained in:
PyTorch MergeBot
2022-12-13 03:36:31 +00:00
parent 42a5f6ee5d
commit b3e6a6dc0b
8 changed files with 1 additions and 608 deletions

View File

@ -12,11 +12,7 @@ ignore =
B007,B008,
# these ignores are from flake8-comprehensions; please fix!
C400,C401,C402,C403,C404,C405,C407,C411,C413,C414,C415
per-file-ignores =
__init__.py: F401
torch/utils/cpp_extension.py: B950
torchgen/api/types/__init__.py: F401,F403
torchgen/executorch/api/types/__init__.py: F401,F403
per-file-ignores = __init__.py: F401 torch/utils/cpp_extension.py: B950 torchgen/api/types/__init__.py: F401,F403
optional-ascii-coding = True
exclude =
./.git,

View File

@ -1,109 +0,0 @@
import unittest
from torchgen import local
from torchgen.api.types import (
BaseCType,
ConstRefCType,
CType,
longT,
MutRefCType,
NamedCType,
OptionalCType,
TupleCType,
VectorCType,
voidT,
)
from torchgen.executorch.api.et_cpp import argument_type, return_type, returns_type
from torchgen.executorch.api.types import ArrayRefCType, scalarT, tensorListT, tensorT
from torchgen.model import Argument, FunctionSchema, Return
class ExecutorchCppTest(unittest.TestCase):
"""
Test torchgen.executorch.api.cpp
"""
def _test_argumenttype_type(self, arg_str: str, expected: NamedCType) -> None:
arg = Argument.parse(arg_str)
self.assertEqual(str(argument_type(arg, binds=arg.name)), str(expected))
@local.parametrize(
use_const_ref_for_mutable_tensors=False, use_ilistref_for_tensor_lists=False
)
def test_argumenttype_type(self) -> None:
data = [
("Tensor self", NamedCType("self", ConstRefCType(BaseCType(tensorT)))),
("Tensor(a!) out", NamedCType("out", MutRefCType(BaseCType(tensorT)))),
(
"Tensor? opt",
NamedCType("opt", ConstRefCType(OptionalCType(BaseCType(tensorT)))),
),
("Scalar scalar", NamedCType("scalar", ConstRefCType(BaseCType(scalarT)))),
(
"Scalar? scalar",
NamedCType("scalar", ConstRefCType(OptionalCType(BaseCType(scalarT)))),
),
("int[] size", NamedCType("size", ArrayRefCType(BaseCType(longT)))),
("int? dim", NamedCType("dim", OptionalCType(BaseCType(longT)))),
("Tensor[] weight", NamedCType("weight", BaseCType(tensorListT))),
(
"Scalar[] spacing",
NamedCType("spacing", ArrayRefCType(ConstRefCType(BaseCType(scalarT)))),
),
(
"Tensor?[] weight",
NamedCType("weight", ArrayRefCType(OptionalCType(BaseCType(tensorT)))),
),
(
"SymInt[]? output_size",
NamedCType(
"output_size", OptionalCType(ArrayRefCType(BaseCType(longT)))
),
),
(
"int[]? dims",
NamedCType("dims", OptionalCType(ArrayRefCType(BaseCType(longT)))),
),
]
for d in data:
self._test_argumenttype_type(*d)
def _test_returntype_type(self, ret_str: str, expected: CType) -> None:
ret = Return.parse(ret_str)
self.assertEqual(str(return_type(ret)), str(expected))
@local.parametrize(
use_const_ref_for_mutable_tensors=False, use_ilistref_for_tensor_lists=False
)
def test_returntype_type(self) -> None:
data = [
("Tensor", BaseCType(tensorT)),
("Tensor(a!)", MutRefCType(BaseCType(tensorT))),
("Tensor[]", VectorCType(BaseCType(tensorT))),
]
for d in data:
self._test_returntype_type(*d)
@local.parametrize(
use_const_ref_for_mutable_tensors=False, use_ilistref_for_tensor_lists=False
)
def test_returns_type(self) -> None:
func = FunctionSchema.parse(
"min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)"
)
expected = TupleCType([BaseCType(tensorT), BaseCType(tensorT)])
self.assertEqual(str(returns_type(func.returns)), str(expected))
@local.parametrize(
use_const_ref_for_mutable_tensors=False, use_ilistref_for_tensor_lists=False
)
def test_void_return_type(self) -> None:
func = FunctionSchema.parse(
"_foreach_add_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()"
)
expected = BaseCType(voidT)
self.assertEqual(str(returns_type(func.returns)), str(expected))
if __name__ == "__main__":
unittest.main()

View File

@ -1,368 +0,0 @@
from typing import List, Optional, Sequence, Set, Union
from torchgen import local
from torchgen.api.types import (
ArgName,
ArrayCType,
BaseCType,
Binding,
ConstRefCType,
CType,
MutRefCType,
NamedCType,
SpecialArgName,
TupleCType,
VectorCType,
voidT,
)
from torchgen.model import (
Argument,
Arguments,
BaseTy,
BaseType,
ListType,
NativeFunction,
OptionalType,
Return,
SelfArgument,
TensorOptionsArguments,
Type,
)
from torchgen.utils import assert_never
from .types import (
ArrayRefCType,
BaseTypeToCppMapping,
OptionalCType,
scalarT,
tensorListT,
tensorT,
)
"""
This file describes the translation of JIT schema to the public C++ API, which is what people use when they call
functions like at::add. It also serves as a native function API, which is the signature of kernels,
since in Executorch CppSignature is the same as NativeSignature.
Difference between this file and torchgen.api.cpp.py:
- Executorch doesn't support TensorOptions, however in this file we still keep the logic here to be compatible with
torchgen.api.cpp, so that we can do stuff like ATen mode (running ATen kernels in Executorch).
- Executorch doesn't support Dimname.
- Executorch runtime doesn't support SymInt, will treat it as int.
"""
# Translation of "value types" in JIT schema to C++ API type. Value
# types look the same no matter if they are argument types or return
# types. Returns None if the type in question is not a value type.
def valuetype_type(
t: Type,
*,
binds: ArgName,
remove_non_owning_ref_types: bool = False,
) -> Optional[NamedCType]:
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor or t.name == BaseTy.Scalar:
return None
# For SymInt we simply treat it as int.
elif str(t) == "SymInt":
return NamedCType(binds, BaseCType(BaseTypeToCppMapping[BaseTy.int]))
if remove_non_owning_ref_types:
if t.name == BaseTy.str:
raise AssertionError(
"string ref->value conversion: not implemented yet"
)
# All other BaseType currently map directly to BaseCppTypes.
return NamedCType(binds, BaseCType(BaseTypeToCppMapping[t.name]))
elif isinstance(t, OptionalType):
elem = valuetype_type(t.elem, binds=binds)
if elem is None:
return None
return NamedCType(binds, OptionalCType(elem.type))
elif isinstance(t, ListType):
if str(t.elem) == "bool":
assert t.size is not None
return NamedCType(
binds, ArrayCType(BaseCType(BaseTypeToCppMapping[BaseTy.bool]), t.size)
)
else:
return None
else:
raise AssertionError(f"unrecognized type {repr(t)}")
# Translation of types occuring in JIT arguments to a C++ argument type.
# If remove_non_owning_ref_types is set, we'll guarantee that the outputed CType is not a non-owning reference type.
# For example, we'll return std::vector<int> instead of IntArrayRef.
# See Note [translation from C++ reference to value types]
def argumenttype_type(
t: Type,
*,
mutable: bool,
binds: ArgName,
remove_non_owning_ref_types: bool = False,
) -> NamedCType:
# If it's a value type, do the value type translation
r = valuetype_type(
t,
binds=binds,
remove_non_owning_ref_types=remove_non_owning_ref_types,
)
if r is not None:
return r
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
if mutable and not local.use_const_ref_for_mutable_tensors():
return NamedCType(binds, MutRefCType(BaseCType(tensorT)))
else:
return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
elif t.name == BaseTy.Scalar:
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
else:
raise AssertionError(f"base type should have been value type {t}")
elif isinstance(t, OptionalType):
if str(t.elem) == "Tensor":
if mutable and not local.use_const_ref_for_mutable_tensors():
return NamedCType(
binds, MutRefCType(BaseCType(tensorT))
) # TODO: fix this discrepancy
else:
return NamedCType(
binds, ConstRefCType(OptionalCType(BaseCType(tensorT)))
)
elif str(t.elem) == "Scalar":
return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT))))
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
return NamedCType(binds, OptionalCType(elem.type))
elif isinstance(t, ListType):
# TODO: keeping these special cases for Tensor[] and Tensor?[] so that we can hookup with ATen kernels.
if str(t.elem) == "Tensor":
return NamedCType(binds, BaseCType(tensorListT))
elif str(t.elem) == "Dimname":
raise NotImplementedError("Executorch doesn't support Dimname")
elif str(t.elem) == "Tensor?":
return NamedCType(binds, ArrayRefCType(OptionalCType(BaseCType(tensorT))))
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
return NamedCType(binds, ArrayRefCType(elem.type))
else:
raise AssertionError(f"unrecognized type {repr(t)}")
# Translate a JIT argument into its C++ type
def argument_type(a: Argument, *, binds: ArgName) -> NamedCType:
return argumenttype_type(a.type, mutable=a.is_write, binds=binds)
# Translation of a (non-multi) return type from JIT to C++
# N.B: returntype_type returns a CType, not a NamedCType.
# This is mostly because of the mismatch between return types and return names.
# e.g. a function with a return type of 'void' has 0 return names,
# and a function with a return type of 'std::tuple' has >1 return name.
def returntype_type(t: Type, *, mutable: bool) -> CType:
# placeholder is ignored
r = valuetype_type(t, binds="__placeholder__")
if r is not None:
return r.type
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
if mutable:
if local.use_const_ref_for_mutable_tensors():
return ConstRefCType(BaseCType(tensorT))
else:
return MutRefCType(BaseCType(tensorT))
else:
# Note [Tensor Copy Returns]
# Currently, we use "Argument.is_write" to determine
# whether or not Tensor return types should be copies or references.
# If that ever changes, take a look at other locations of this note!
return BaseCType(tensorT)
elif t.name == BaseTy.Scalar:
return BaseCType(scalarT)
elif isinstance(t, ListType):
assert (
not mutable
), "Native functions should never return a mutable tensor list. They should return void."
elem = returntype_type(t.elem, mutable=False)
assert t.size is None, f"fixed size list returns not supported: {t}"
return VectorCType(elem)
raise AssertionError(f"unrecognized return type {t}")
# Translation of a single return to its C++ type
def return_type(r: Return) -> CType:
return returntype_type(r.type, mutable=r.is_write)
# Translation of a full (possibly multi) return from JIT to its C++ type
def returns_type(rs: Sequence[Return]) -> CType:
if len(rs) == 0:
return BaseCType(voidT)
elif len(rs) == 1:
return return_type(rs[0])
else:
return TupleCType([return_type(r) for r in rs])
def return_names(f: NativeFunction, *, fallback_name: str = "result") -> Sequence[str]:
returns: List[str] = []
for i, r in enumerate(f.func.returns):
# If we have an inplace function, the return argument is
# implicitly named self.
# TODO: Consider incorporating this into the data model
if f.func.name.name.inplace:
assert i == 0, "illegal inplace function with multiple returns"
name = "self"
# If we are out function, the name is the name of the
# corresponding output function (r.name will get recorded
# in field_name later.)
elif f.func.is_out_fn():
name = f.func.arguments.out[i].name
# If the return argument is explicitly named...
elif r.name:
name_conflict = any(
r.name == a.name for a in f.func.schema_order_arguments()
)
if name_conflict and not f.func.is_out_fn():
name = f"{r.name}_return"
else:
name = r.name
# If there is no explicit name and no fallback name was passed in, we just name the output result,
# unless it's a multi-return, in which case it's result0,
# result1, etc (zero-indexed)
else:
name = fallback_name if len(f.func.returns) == 1 else f"{fallback_name}{i}"
returns.append(name)
return returns
JIT_TO_CPP_DEFAULT = {
"False": "false",
"True": "true",
"None": "torch::executorch::nullopt", # UGH this one is type directed
"[]": "{}",
"contiguous_format": "torch::executorch::MemoryFormat::Contiguous",
"long": "torch::executorch::kLong",
}
# Convert a JIT default into C++ expression representing the default
def default_expr(d: str, t: Type) -> str:
if d == "None" and str(t) == "Tensor?":
return "{}"
if isinstance(t, BaseType) and t.name is BaseTy.str:
# Schema allows single quotes but C++ needs double
if len(d) >= 2 and d[0] == "'" and d[-1] == "'":
s = ""
i = 1
while i + 1 < len(d):
if d[i] != "\\":
if d[i] == '"':
s += '\\"'
else:
s += d[i]
i += 1
else:
if d[i + 1] == "'":
s += "'"
else:
s += d[i : i + 2]
i += 2
return f'"{s}"'
if isinstance(t, OptionalType):
if d == "None":
return "torch::executor::nullopt"
return default_expr(d, t.elem)
if isinstance(t, ListType):
if d.startswith("[") and d.endswith("]"):
return "{" + d[1:-1] + "}"
elif t.size is None:
# NOTE: Sized lists can have scalar defaults
raise ValueError(f"Expected a list default '[...]' but found: '{d}'")
return JIT_TO_CPP_DEFAULT.get(d, d)
# Convert an argument into its C++ API form
def argument(
a: Union[Argument, TensorOptionsArguments, SelfArgument],
*,
cpp_no_default_args: Set[str],
method: bool,
faithful: bool,
has_tensor_options: bool,
) -> List[Binding]:
def sub_argument(
a: Union[Argument, TensorOptionsArguments, SelfArgument]
) -> List[Binding]:
return argument(
a,
cpp_no_default_args=cpp_no_default_args,
method=method,
faithful=faithful,
has_tensor_options=has_tensor_options,
)
if isinstance(a, Argument):
binds: ArgName
if a.name == "memory_format" and has_tensor_options:
binds = SpecialArgName.possibly_redundant_memory_format
else:
binds = a.name
default: Optional[str] = None
if a.name not in cpp_no_default_args and a.default is not None:
default = default_expr(a.default, a.type)
return [
Binding(
nctype=argument_type(a, binds=binds),
name=a.name,
default=default,
argument=a,
)
]
elif isinstance(a, TensorOptionsArguments):
raise NotImplementedError("Need to implement type resolution for TensorOptions")
elif isinstance(a, SelfArgument):
if method:
# Caller is responsible for installing implicit this in context!
return []
else:
return sub_argument(a.argument)
else:
assert_never(a)
def arguments(
arguments: Arguments,
*,
faithful: bool,
method: bool,
cpp_no_default_args: Set[str],
) -> List[Binding]:
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
if faithful:
args.extend(arguments.non_out)
args.extend(arguments.out)
else:
args.extend(arguments.out)
args.extend(arguments.non_out)
return [
r.no_default() if faithful else r
for a in args
for r in argument(
a,
faithful=faithful,
method=method,
has_tensor_options=arguments.tensor_options is not None,
cpp_no_default_args=cpp_no_default_args,
)
]

View File

@ -1,2 +0,0 @@
from .types import *
from .signatures import * # isort:skip

View File

@ -1,67 +0,0 @@
from dataclasses import dataclass
from typing import List, Optional, Set
import torchgen.api.cpp as aten_cpp
from torchgen.api.types import Binding, CType
from torchgen.model import FunctionSchema, NativeFunction
@dataclass(frozen=True)
class ExecutorchCppSignature:
"""
This signature is merely a CppSignature with Executorch types. The inline definition
of CppSignature is generated in Functions.h and it's used by unboxing functions.
"""
# The schema this signature is derived from
func: FunctionSchema
# The set of C++ arguments which should not have defaults applied to them
cpp_no_default_args: Set[str]
# Allows you to prepend an arbitrary prefix to the signature name.
# This is useful for parts of the codegen that generate wrappers around kernels,
# and need to avoid naming collisions.
prefix: str = ""
def arguments(self) -> List[Binding]:
return et_cpp.arguments(
self.func.arguments,
faithful=True, # always faithful, out argument at the end
method=False, # method not supported
cpp_no_default_args=self.cpp_no_default_args,
)
def name(self) -> str:
return self.prefix + aten_cpp.name(
self.func,
faithful_name_for_out_overloads=True,
)
def decl(self, name: Optional[str] = None) -> str:
args_str = ", ".join(a.decl() for a in self.arguments())
if name is None:
name = self.name()
return f"{self.returns_type().cpp_type()} {name}({args_str})"
def defn(self, name: Optional[str] = None) -> str:
args = [a.defn() for a in self.arguments()]
args_str = ", ".join(args)
if name is None:
name = self.name()
return f"{self.returns_type().cpp_type()} {name}({args_str})"
def returns_type(self) -> CType:
return et_cpp.returns_type(self.func.returns)
@staticmethod
def from_native_function(
f: NativeFunction, *, prefix: str = ""
) -> "ExecutorchCppSignature":
return ExecutorchCppSignature(
func=f.func, prefix=prefix, cpp_no_default_args=f.cpp_no_default_args
)
from torchgen.executorch.api import et_cpp

View File

@ -1,57 +0,0 @@
from dataclasses import dataclass
from typing import Dict
from torchgen.api.types import BaseCppType, boolT, CType, doubleT, longT
from torchgen.model import BaseTy
halfT = BaseCppType("torch::executor", "Half")
bfloat16T = BaseCppType("torch::executor", "BFloat16")
stringT = BaseCppType("torch::executor", "string_view")
scalarTypeT = BaseCppType("torch::executor", "ScalarType")
tensorT = BaseCppType("torch::executor", "Tensor")
tensorListT = BaseCppType("torch::executor", "TensorList")
scalarT = BaseCppType("torch::executor", "Scalar")
memoryFormatT = BaseCppType("torch::executor", "MemoryFormat")
intArrayRefT = BaseCppType("torch::executor", "IntArrayRef")
optionalT = BaseCppType("torch::executor", "optional")
BaseTypeToCppMapping: Dict[BaseTy, BaseCppType] = {
BaseTy.int: longT,
BaseTy.float: doubleT,
BaseTy.bool: boolT,
BaseTy.str: stringT,
BaseTy.ScalarType: scalarTypeT,
BaseTy.Tensor: tensorT,
BaseTy.Scalar: scalarT,
BaseTy.MemoryFormat: memoryFormatT,
}
@dataclass(frozen=True)
class OptionalCType(CType):
elem: "CType"
def cpp_type(self, *, strip_ref: bool = False) -> str:
# Do not pass `strip_ref` recursively.
return f"torch::executor::optional<{self.elem.cpp_type()}>"
def cpp_type_registration_declarations(self) -> str:
return f"torch::executor::optional<{self.elem.cpp_type_registration_declarations()}>"
def remove_const_ref(self) -> "CType":
return OptionalCType(self.elem.remove_const_ref())
@dataclass(frozen=True)
class ArrayRefCType(CType):
elem: "CType"
def cpp_type(self, *, strip_ref: bool = False) -> str:
# Do not pass `strip_ref` recursively.
return f"torch::executor::ArrayRef<{self.elem.cpp_type()}>"
def cpp_type_registration_declarations(self) -> str:
return f"torch::executor::ArrayRef<{self.elem.cpp_type_registration_declarations()}>"
def remove_const_ref(self) -> "CType":
return ArrayRefCType(self.elem.remove_const_ref())