Remove unsafe PyTorchError constructor (#154961)

Use libfmt in call sites of PyTorchError.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154961
Approved by: https://github.com/albanD
This commit is contained in:
cyy
2025-07-11 18:22:48 +00:00
committed by PyTorch MergeBot
parent 1cb0597a89
commit b0556110e5
14 changed files with 173 additions and 146 deletions

View File

@ -506,10 +506,11 @@ if(NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
)
# Pybind11 requires explicit linking of the torch_python library
if(BUILD_LIBTORCHLESS)
target_link_libraries(nnapi_backend PRIVATE ${TORCH_LIB} torch_python pybind::pybind11)
target_link_libraries(nnapi_backend PRIVATE ${TORCH_LIB})
else()
target_link_libraries(nnapi_backend PRIVATE torch torch_python pybind::pybind11)
target_link_libraries(nnapi_backend PRIVATE torch)
endif()
target_link_libraries(nnapi_backend PRIVATE torch_python pybind::pybind11 fmt::fmt-header-only)
endif()
set(TORCH_PYTHON_COMPILE_OPTIONS ${TORCH_PYTHON_COMPILE_OPTIONS} PARENT_SCOPE)

View File

@ -141,9 +141,9 @@ static PyObject* THPDevice_rc(PyObject* a, PyObject* b, int op) {
case Py_LE:
case Py_GT:
case Py_GE:
throw torch::TypeError("comparison not implemented");
TORCH_CHECK_TYPE(false, "comparison not implemented");
default:
throw torch::TypeError("unexpected comparison op");
TORCH_CHECK_TYPE(false, "unexpected comparison op");
}
END_HANDLE_TH_ERRORS
}

View File

@ -228,17 +228,6 @@ std::string processErrorMsg(std::string str) {
return str;
}
static std::string formatMessage(const char* format, va_list fmt_args) {
constexpr size_t ERROR_BUF_SIZE = 1024;
std::string error_buf(ERROR_BUF_SIZE, '\0');
auto res = vsnprintf(error_buf.data(), ERROR_BUF_SIZE, format, fmt_args);
if (res < 0) {
res = 0;
}
error_buf.resize(res);
return error_buf;
}
void translate_exception_to_python(const std::exception_ptr& e_ptr) {
try {
TORCH_INTERNAL_ASSERT(
@ -250,13 +239,6 @@ void translate_exception_to_python(const std::exception_ptr& e_ptr) {
CATCH_ALL_ERRORS(return)
}
TypeError::TypeError(const char* format, ...) {
va_list fmt_args{};
va_start(fmt_args, format);
msg = formatMessage(format, fmt_args);
va_end(fmt_args);
}
void PyWarningHandler::InternalHandler::process(const c10::Warning& warning) {
warning_buffer_.push_back(warning);
}

View File

@ -283,19 +283,12 @@ struct PyTorchError : public std::exception {
std::string msg;
};
// Declare a printf-like function on gcc & clang
// The compiler can then warn on invalid format specifiers
#ifdef __GNUC__
#define TORCH_FORMAT_FUNC(FORMAT_INDEX, VA_ARGS_INDEX) \
__attribute__((format(printf, FORMAT_INDEX, VA_ARGS_INDEX)))
#else
#define TORCH_FORMAT_FUNC(FORMAT_INDEX, VA_ARGS_INDEX)
#endif
// Translates to Python TypeError
struct TypeError : public PyTorchError {
TORCH_PYTHON_API TypeError() = default;
TORCH_PYTHON_API TypeError(std::string msg_)
: PyTorchError(std::move(msg_)) {}
using PyTorchError::PyTorchError;
TORCH_PYTHON_API TypeError(const char* format, ...) TORCH_FORMAT_FUNC(2, 3);
PyObject* python_type() override {
return PyExc_TypeError;
}

View File

@ -82,9 +82,11 @@ static PyObject* THPGenerator_setState(PyObject* _self, PyObject* _new_state) {
HANDLE_TH_ERRORS
if (!THPVariable_Check(_new_state)) {
throw torch::TypeError(
"expected a torch.ByteTensor, but got %s",
Py_TYPE(_new_state)->tp_name);
TORCH_CHECK_TYPE(
false,
fmt::format(
"expected a torch.ByteTensor, but got {}",
Py_TYPE(_new_state)->tp_name));
}
auto self = (THPGenerator*)_self;
auto& gen = self->cdata;
@ -380,8 +382,10 @@ PyObject* THPGenerator_Wrap(const Generator& gen) {
at::Generator THPGenerator_Unwrap(PyObject* state) {
if (!Py_IS_TYPE(state, &THPGeneratorType)) {
throw torch::TypeError(
"expected a Generator, but got %s", Py_TYPE(state)->tp_name);
TORCH_CHECK_TYPE(
false,
fmt::format(
"expected a Generator, but got {}", Py_TYPE(state)->tp_name));
}
return reinterpret_cast<THPGenerator*>(state)->cdata;
}

View File

@ -26,7 +26,7 @@ inline Device py_object_to_device(py::object object) {
if (THPDevice_Check(obj)) {
return reinterpret_cast<THPDevice*>(obj)->device;
}
throw TypeError("Expected device");
TORCH_CHECK_TYPE(false, "Expected device");
}
inline Dtype py_object_to_dtype(py::object object) {
@ -34,7 +34,7 @@ inline Dtype py_object_to_dtype(py::object object) {
if (THPDtype_Check(obj)) {
return reinterpret_cast<THPDtype*>(obj)->scalar_type;
}
throw TypeError("Expected dtype");
TORCH_CHECK_TYPE(false, "Expected dtype");
}
template <typename ModuleType>

View File

@ -793,11 +793,13 @@ static void _get_tensors_to_save(
if (is_executable) {
// TODO: We should really just ALWAYS throw an error here, but
// doing so will break some internal tests. We should fix those.
throw torch::TypeError(
"save_for_backward can only save variables, but argument %ld is of "
"type %s",
i,
Py_TYPE(obj)->tp_name);
TORCH_CHECK_TYPE(
false,
fmt::format(
"save_for_backward can only save variables, but argument {} is of "
"type {}",
i,
Py_TYPE(obj)->tp_name));
}
}
}

View File

@ -1,6 +1,7 @@
#include <torch/csrc/autograd/python_legacy_variable.h>
#include <ATen/ATen.h>
#include <fmt/format.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/python_function.h>
@ -57,8 +58,9 @@ static PyObject* THPVariable_pynew(
!is_volatile || !requires_grad,
"Variable can't be volatile and require_grad at the same time!");
if (grad_fn && !THPFunction_Check(grad_fn)) {
throw TypeError(
"_grad_fn has to be a Function object or None, but got %s",
TORCH_CHECK_TYPE(
false,
"_grad_fn has to be a Function object or None, but got ",
Py_TYPE(grad_fn)->tp_name);
}
Variable var;
@ -74,8 +76,10 @@ static PyObject* THPVariable_pynew(
} else if (THPVariable_Check(data)) {
var = THPVariable_Unpack(data).detach();
} else {
throw torch::TypeError(
"Variable data has to be a tensor, but got %s", Py_TYPE(data)->tp_name);
TORCH_CHECK_TYPE(
false,
"Variable data has to be a tensor, but got ",
Py_TYPE(data)->tp_name);
}
// We set `tensor`'s `allow_tensor_metadata_change` to true here, because we
// want to allow the following use case for backward compatibility:

View File

@ -29,6 +29,7 @@
#include <c10/util/irange.h>
#include <c10/core/Layout.h>
#include <fmt/format.h>
using namespace at;
using namespace torch::autograd::utils;
@ -123,10 +124,12 @@ inline Variable valueToTensor(
} else if (torch::is_symbool(value)) {
scalar = Scalar(py::cast<c10::SymBool>(py::handle(value)));
} else {
throw TypeError(
"can't assign a %s to a %s",
TORCH_CHECK_TYPE(
false,
"can't assign a ",
Py_TYPE(value)->tp_name,
torch::utils::options_to_string(options).c_str());
" to a ",
torch::utils::options_to_string(options));
}
// lift_fresh is supposed to be used in situations where you are guaranteed to
// get a plain Tensor which is not true for cpu device but not for non cpu
@ -443,7 +446,7 @@ static void dispatch_set_item(
int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
HANDLE_TH_ERRORS
if (py_value == nullptr) {
throw TypeError("Tensor does not support deleting items");
TORCH_CHECK_TYPE(false, "Tensor does not support deleting items");
}
if ((check_has_torch_function(self)) ||
(check_has_torch_function(py_value))) {
@ -456,7 +459,7 @@ int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
if (self_.layout() == kSparse || self_.layout() == kSparseCsr ||
self_.layout() == kSparseCsc || self_.layout() == kSparseBsr ||
self_.layout() == kSparseBsc) {
throw TypeError("Cannot assign to a sparse tensor");
TORCH_CHECK_TYPE(false, "Cannot assign to a sparse tensor");
}
OptionalDeviceGuard device_guard(device_of(self_));
at::Device self_device = self_.device();

View File

@ -5,6 +5,7 @@
#include <torch/csrc/utils/python_strings.h>
#include <ATen/PythonTorchFunctionTLS.h>
#include <fmt/format.h>
namespace torch {
static PyObject* disabled_torch_function = nullptr;
@ -219,8 +220,9 @@ PyObject* THPModule_disable_torch_function(PyObject* self, PyObject* a) {
} else if (PyTuple_Check(args)) {
py_args = py::reinterpret_borrow<py::tuple>(args);
} else {
throw torch::TypeError(
"expected List or Tuple (got %s)", Py_TYPE(args)->tp_name);
TORCH_CHECK_TYPE(
false,
fmt::format("expected List or Tuple (got {})", Py_TYPE(args)->tp_name));
}
// These are all C-API calls so no exceptions will be raised
@ -253,8 +255,9 @@ PyObject* THPModule_disable_torch_dispatch(PyObject* self, PyObject* a) {
} else if (PyTuple_Check(args)) {
py_args = py::reinterpret_borrow<py::tuple>(args);
} else {
throw torch::TypeError(
"expected List or Tuple (got %s)", Py_TYPE(args)->tp_name);
TORCH_CHECK_TYPE(
false,
fmt::format("expected List or Tuple (got {})", Py_TYPE(args)->tp_name));
}
// This implementation is not completely correct. The moral

View File

@ -1417,20 +1417,24 @@ std::string FunctionSignature::toString() const {
const auto min_args = signature.min_args;
const long nargs_ = nargs;
if (min_args != max_pos_args) {
throw TypeError(
"%s() takes from %zu to %zu positional arguments but %ld were given",
signature.name.c_str(),
min_args,
max_pos_args,
nargs_);
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}() takes from {} to {} positional arguments but {} were given",
signature.name,
min_args,
max_pos_args,
nargs_));
}
throw TypeError(
"%s() takes %zu positional argument%s but %ld %s given",
signature.name.c_str(),
max_pos_args,
max_pos_args == 1 ? "" : "s",
nargs_,
nargs == 1 ? "was" : "were");
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}() takes {} positional argument{} but {} {} given",
signature.name,
max_pos_args,
max_pos_args == 1 ? "" : "s",
nargs_,
nargs == 1 ? "was" : "were"));
}
[[noreturn]] static void missing_args(
@ -1450,12 +1454,14 @@ std::string FunctionSignature::toString() const {
}
}
throw TypeError(
"%s() missing %d required positional argument%s: %s",
signature.name.c_str(),
num_missing,
num_missing == 1 ? "s" : "",
ss.str().c_str());
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}() missing {} required positional argument{}: {}",
signature.name,
num_missing,
num_missing == 1 ? "s" : "",
ss.str()));
}
static Py_ssize_t find_param(FunctionSignature& signature, PyObject* name) {
@ -1484,27 +1490,31 @@ static Py_ssize_t find_param(FunctionSignature& signature, PyObject* name) {
// accessible within this thread.
while (PyDict_Next(kwargs, &pos, &key, &value)) {
if (!THPUtils_checkString(key)) {
throw TypeError("keywords must be strings");
TORCH_CHECK_TYPE(false, "keywords must be strings");
}
auto param_idx = find_param(signature, key);
if (param_idx < 0) {
throw TypeError(
"%s() got an unexpected keyword argument '%s'",
signature.name.c_str(),
THPUtils_unpackString(key).c_str());
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}() got an unexpected keyword argument '{}'",
signature.name,
THPUtils_unpackString(key)));
}
if (param_idx < num_pos_args) {
throw TypeError(
"%s() got multiple values for argument '%s'",
signature.name.c_str(),
THPUtils_unpackString(key).c_str());
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}() got multiple values for argument '{}'",
signature.name,
THPUtils_unpackString(key)));
}
}
// this should never be hit
throw TypeError("invalid keyword arguments");
TORCH_CHECK_TYPE(false, "invalid keyword arguments");
}
bool FunctionSignature::parse(
@ -1591,12 +1601,14 @@ bool FunctionSignature::parse(
} else if (raise_exception) {
if (is_kwd) {
// foo(): argument 'other' must be str, not int
throw TypeError(
"%s(): argument '%s' must be %s, not %s",
name.c_str(),
param.name.c_str(),
param.type_name().c_str(),
Py_TYPE(obj)->tp_name);
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}(): argument '{}' must be {}, not {}",
name,
param.name,
param.type_name(),
Py_TYPE(obj)->tp_name));
} else {
// foo(): argument 'other' (position 2) must be str, not int
if (failed_idx != -1) {
@ -1605,25 +1617,29 @@ bool FunctionSignature::parse(
obj = args;
}
TORCH_INTERNAL_ASSERT(failed_idx < PySequence_Size(obj));
throw TypeError(
"%s(): argument '%s' (position %ld) must be %s, but found element of type %s at pos %ld",
name.c_str(),
param.name.c_str(),
static_cast<long>(arg_pos + 1),
param.type_name().c_str(),
Py_TYPE(py::reinterpret_steal<py::object>(
PySequence_GetItem(obj, failed_idx))
.ptr())
->tp_name,
static_cast<long>(failed_idx));
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}(): argument '{}' (position {}) must be {}, but found element of type {} at pos {}",
name,
param.name,
arg_pos + 1,
param.type_name(),
Py_TYPE(py::reinterpret_steal<py::object>(
PySequence_GetItem(obj, failed_idx))
.ptr())
->tp_name,
failed_idx));
}
throw TypeError(
"%s(): argument '%s' (position %ld) must be %s, not %s",
name.c_str(),
param.name.c_str(),
static_cast<long>(arg_pos + 1),
param.type_name().c_str(),
Py_TYPE(obj)->tp_name);
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}(): argument '{}' (position {}) must be {}, not {}",
name,
param.name,
arg_pos + 1,
param.type_name(),
Py_TYPE(obj)->tp_name));
}
} else {
return false;
@ -1745,7 +1761,7 @@ void PythonArgParser::print_error(
auto options = get_signatures();
auto msg =
torch::format_invalid_args(args, kwargs, function_name + "()", options);
throw TypeError("%s", msg.c_str());
TORCH_CHECK_TYPE(false, msg);
}
std::vector<std::string> PythonArgParser::get_signatures() const {
@ -1812,8 +1828,12 @@ at::Tensor PythonArgs::tensor_slow(int i) {
// a test for Py_None here; instead, you need to mark the argument
// as *allowing none*; you can do this by writing 'Tensor?' instead
// of 'Tensor' in the ATen metadata.
throw TypeError(
"expected Tensor as argument %d, but got %s", i, Py_TYPE(obj)->tp_name);
TORCH_CHECK_TYPE(
false,
fmt::format(
"expected Tensor as argument {}, but got {}",
i,
Py_TYPE(obj)->tp_name));
}
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
at::tracer::impl::NoTracerDispatchMode tracer_guard;

View File

@ -39,6 +39,7 @@
// Scalar and Tensor, UNLESS they require grad (in which case
// they only bind to Tensor).
#include <fmt/format.h>
#include <pybind11/pytypes.h>
#include <torch/csrc/python_headers.h>
@ -490,7 +491,9 @@ inline std::array<at::Tensor, N> PythonArgs::tensorlist_n(int i) {
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
if (size != N) {
throw TypeError("expected tuple of %d elements but got %d", N, (int)size);
TORCH_CHECK_TYPE(
false,
fmt::format("expected tuple of {} elements but got {}", N, size));
}
for (const auto idx : c10::irange(size)) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
@ -528,12 +531,14 @@ inline void throw_intlist_exception(
? e.what()
: std::string("type must be ") + args->signature.params[i].type_name() +
",but got " + Py_TYPE(obj)->tp_name;
throw TypeError(
"%s(): argument '%s' failed to unpack the object at pos %zu with error \"%s\"",
args->signature.name.c_str(),
args->signature.params[i].name.c_str(),
idx + 1,
error.c_str());
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}(): argument '{}' failed to unpack the object at pos {} with error \"{}\"",
args->signature.name,
args->signature.params[i].name,
idx + 1,
error));
}
inline std::vector<c10::SymInt> PythonArgs::symintlist(int i) {
@ -712,13 +717,15 @@ inline std::vector<double> PythonArgs::getDoublelist(int i) {
res[idx] = THPUtils_unpackDouble(obj);
}
} catch (const std::exception&) {
throw TypeError(
"%s(): argument '%s' must be %s, but found element of type %s at pos %zu",
signature.name.c_str(),
signature.params[i].name.c_str(),
signature.params[i].type_name().c_str(),
Py_TYPE(obj)->tp_name,
idx + 1);
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}(): argument '{}' must be {}, but found element of type {} at pos {}",
signature.name,
signature.params[i].name,
signature.params[i].type_name(),
Py_TYPE(obj)->tp_name,
idx + 1));
}
}
return res;
@ -1119,8 +1126,10 @@ inline c10::Stream PythonArgs::stream(int i) {
return c10::Stream(
c10::Stream::Default::DEFAULT, c10::Device(c10::DeviceType::CPU, -1));
if (!THPStream_Check(args[i])) {
throw TypeError(
"expected Stream object. Got '%s'", Py_TYPE(args[i])->tp_name);
TORCH_CHECK_TYPE(
false,
fmt::format(
"expected Stream object. Got '{}'", Py_TYPE(args[i])->tp_name));
}
return c10::Stream::unpack3(
((THPStream*)args[i])->stream_id,

View File

@ -670,11 +670,13 @@ Tensor legacy_sparse_tensor_generic_ctor_new(
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
if (ctor_or_new == CtorOrNew::CTOR) {
throw TypeError(
TORCH_CHECK_TYPE(
false,
"torch.sparse.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() "
"or construct a strided tensor and convert it to sparse via to_sparse.");
} else {
throw TypeError(
TORCH_CHECK_TYPE(
false,
"SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() "
"or construct a strided tensor and convert it to sparse via to_sparse.");
}

View File

@ -1,3 +1,4 @@
#include <fmt/format.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/utils/tensor_numpy.h>
#define WITH_NUMPY_IMPORT_ARRAY
@ -105,7 +106,7 @@ static std::vector<int64_t> to_aten_shape(int ndim, npy_intp* values) {
static std::vector<int64_t> seq_to_aten_shape(PyObject* py_seq) {
int ndim = PySequence_Length(py_seq);
if (ndim == -1) {
throw TypeError("shape and strides must be sequences");
TORCH_CHECK_TYPE(false, "shape and strides must be sequences");
}
auto result = std::vector<int64_t>(ndim);
for (const auto i : c10::irange(ndim)) {
@ -303,7 +304,8 @@ int aten_to_numpy_dtype(const ScalarType scalar_type) {
case kBool:
return NPY_BOOL;
default:
throw TypeError("Got unsupported ScalarType %s", toString(scalar_type));
TORCH_CHECK_TYPE(
false, "Got unsupported ScalarType ", toString(scalar_type));
}
}
@ -355,10 +357,12 @@ ScalarType numpy_dtype_to_aten(int dtype) {
auto pytype = THPObjectPtr(PyArray_TypeObjectFromType(dtype));
if (!pytype)
throw python_error();
throw TypeError(
"can't convert np.ndarray of type %s. The only supported types are: "
"float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint64, uint32, uint16, uint8, and bool.",
((PyTypeObject*)pytype.get())->tp_name);
TORCH_CHECK_TYPE(
false,
fmt::format(
"can't convert np.ndarray of type {}. The only supported types are: "
"float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint64, uint32, uint16, uint8, and bool.",
((PyTypeObject*)pytype.get())->tp_name));
}
bool is_numpy_int(PyObject* obj) {
@ -385,7 +389,7 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
TORCH_INTERNAL_ASSERT(cuda_dict);
if (!PyDict_Check(cuda_dict.get())) {
throw TypeError("`__cuda_array_interface__` must be a dict");
TORCH_CHECK_TYPE(false, "`__cuda_array_interface__` must be a dict");
}
// Extract the `obj.__cuda_array_interface__['shape']` attribute
@ -396,7 +400,7 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
throw python_error();
}
if (py_shape == nullptr) {
throw TypeError("attribute `shape` must exist");
TORCH_CHECK_TYPE(false, "attribute `shape` must exist");
}
sizes = seq_to_aten_shape(py_shape);
}
@ -410,7 +414,7 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
throw python_error();
}
if (py_typestr == nullptr) {
throw TypeError("attribute `typestr` must exist");
TORCH_CHECK_TYPE(false, "attribute `typestr` must exist");
}
PyArray_Descr* descr = nullptr;
TORCH_CHECK_VALUE(
@ -432,10 +436,10 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
throw python_error();
}
if (py_data == nullptr) {
throw TypeError("attribute `shape` data exist");
TORCH_CHECK_TYPE(false, "attribute `shape` data exist");
}
if (!PyTuple_Check(py_data) || PyTuple_GET_SIZE(py_data) != 2) {
throw TypeError("`data` must be a 2-tuple of (int, bool)");
TORCH_CHECK_TYPE(false, "`data` must be a 2-tuple of (int, bool)");
}
data_ptr = PyLong_AsVoidPtr(PyTuple_GET_ITEM(py_data, 0));
if (data_ptr == nullptr && PyErr_Occurred()) {
@ -446,8 +450,8 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
throw python_error();
}
if (read_only) {
throw TypeError(
"the read only flag is not supported, should always be False");
TORCH_CHECK_TYPE(
false, "the read only flag is not supported, should always be False");
}
}
@ -461,8 +465,8 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
if (py_strides != nullptr && py_strides != Py_None) {
if (PySequence_Length(py_strides) == -1 ||
static_cast<size_t>(PySequence_Length(py_strides)) != sizes.size()) {
throw TypeError(
"strides must be a sequence of the same length as shape");
TORCH_CHECK_TYPE(
false, "strides must be a sequence of the same length as shape");
}
strides = seq_to_aten_shape(py_strides);