mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle Reviewed By: zertosh Differential Revision: D30279364 fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
This commit is contained in:
committed by
Facebook GitHub Bot
parent
aac3c7bd06
commit
b004307252
@ -121,12 +121,12 @@ def test_fail(path):
|
||||
)
|
||||
if match is None:
|
||||
raise ValueError(f"Unexpected error line format: {error_line}")
|
||||
lineno = int(match.group('lineno'))
|
||||
errors[lineno] += f'{error_line}\n'
|
||||
lineno = int(match.group("lineno"))
|
||||
errors[lineno] += f"{error_line}\n"
|
||||
|
||||
for i, line in enumerate(lines):
|
||||
lineno = i + 1
|
||||
if line.startswith('#') or (" E:" not in line and lineno not in errors):
|
||||
if line.startswith("#") or (" E:" not in line and lineno not in errors):
|
||||
continue
|
||||
|
||||
target_line = lines[lineno - 1]
|
||||
@ -148,7 +148,9 @@ Observed error: {!r}
|
||||
"""
|
||||
|
||||
|
||||
def _test_fail(path: str, error: str, expected_error: Optional[str], lineno: int) -> None:
|
||||
def _test_fail(
|
||||
path: str, error: str, expected_error: Optional[str], lineno: int
|
||||
) -> None:
|
||||
if expected_error is None:
|
||||
raise AssertionError(_FAIL_MSG1.format(lineno, error))
|
||||
elif error not in expected_error:
|
||||
@ -157,12 +159,12 @@ def _test_fail(path: str, error: str, expected_error: Optional[str], lineno: int
|
||||
|
||||
def _construct_format_dict():
|
||||
dct = {
|
||||
'ModuleList': 'torch.nn.modules.container.ModuleList',
|
||||
'AdaptiveAvgPool2d': 'torch.nn.modules.pooling.AdaptiveAvgPool2d',
|
||||
'AdaptiveMaxPool2d': 'torch.nn.modules.pooling.AdaptiveMaxPool2d',
|
||||
'Tensor': 'torch._tensor.Tensor',
|
||||
'Adagrad': 'torch.optim.adagrad.Adagrad',
|
||||
'Adam': 'torch.optim.adam.Adam',
|
||||
"ModuleList": "torch.nn.modules.container.ModuleList",
|
||||
"AdaptiveAvgPool2d": "torch.nn.modules.pooling.AdaptiveAvgPool2d",
|
||||
"AdaptiveMaxPool2d": "torch.nn.modules.pooling.AdaptiveMaxPool2d",
|
||||
"Tensor": "torch._tensor.Tensor",
|
||||
"Adagrad": "torch.optim.adagrad.Adagrad",
|
||||
"Adam": "torch.optim.adam.Adam",
|
||||
}
|
||||
return dct
|
||||
|
||||
@ -181,7 +183,9 @@ def _parse_reveals(file: IO[str]) -> List[str]:
|
||||
string = file.read().replace("*", "")
|
||||
|
||||
# Grab all `# E:`-based comments
|
||||
comments_array = list(map(lambda str: str.partition(" # E: ")[2], string.split("\n")))
|
||||
comments_array = list(
|
||||
map(lambda str: str.partition(" # E: ")[2], string.split("\n"))
|
||||
)
|
||||
comments = "/n".join(comments_array)
|
||||
|
||||
# Only search for the `{*}` pattern within comments,
|
||||
@ -231,5 +235,5 @@ def _test_reveal(path: str, reveal: str, expected_reveal: str, lineno: int) -> N
|
||||
raise AssertionError(_REVEAL_MSG.format(lineno, expected_reveal, reveal))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__])
|
||||
|
Reference in New Issue
Block a user