[codemod][lint][fbcode/c*] Enable BLACK by default

Test Plan: manual inspection & sandcastle

Reviewed By: zertosh

Differential Revision: D30279364

fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
This commit is contained in:
Zsolt Dollenstein
2021-08-12 10:56:55 -07:00
committed by Facebook GitHub Bot
parent aac3c7bd06
commit b004307252
188 changed files with 56875 additions and 28744 deletions

View File

@ -1,11 +1,12 @@
import io
import numpy as np
import os
import shutil
import sys
import unittest
import uuid
import numpy as np
TEST_TENSORBOARD = True
try:
import tensorboard.summary.writer.event_file_writer # noqa: F401
@ -31,8 +32,9 @@ skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2")
TEST_MATPLOTLIB = True
try:
import matplotlib
if os.environ.get('DISPLAY', '') == '':
matplotlib.use('Agg')
if os.environ.get("DISPLAY", "") == "":
matplotlib.use("Agg")
import matplotlib.pyplot as plt
except ImportError:
TEST_MATPLOTLIB = False
@ -41,13 +43,16 @@ skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib")
import torch
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN
def tensor_N(shape, dtype=float):
numel = np.prod(shape)
x = (np.arange(numel, dtype=dtype)).reshape(shape)
return x
class BaseTestCase(TestCase):
""" Base class used for all TensorBoard tests """
"""Base class used for all TensorBoard tests"""
def setUp(self):
if not TEST_TENSORBOARD:
return self.skipTest("Skip the test since TensorBoard is not installed")
@ -67,14 +72,15 @@ class BaseTestCase(TestCase):
if TEST_TENSORBOARD:
from tensorboard.compat.proto.graph_pb2 import GraphDef
from torch.utils.tensorboard import summary, SummaryWriter
from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC
from torch.utils.tensorboard._convert_np import make_np
from torch.utils.tensorboard import _caffe2_graph as c2_graph
from torch.utils.tensorboard._pytorch_graph import graph
from google.protobuf import text_format
from PIL import Image
from tensorboard.compat.proto.graph_pb2 import GraphDef
from torch.utils.tensorboard import _caffe2_graph as c2_graph
from torch.utils.tensorboard import summary, SummaryWriter
from torch.utils.tensorboard._convert_np import make_np
from torch.utils.tensorboard._pytorch_graph import graph
from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC
class TestTensorBoardPyTorchNumpy(BaseTestCase):
def test_pytorch_np(self):
@ -92,7 +98,9 @@ class TestTensorBoardPyTorchNumpy(BaseTestCase):
# CUDA variable
if torch.cuda.device_count() > 0:
self.assertIsInstance(make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray)
self.assertIsInstance(
make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray
)
# python primitive type
self.assertIsInstance(make_np(0), np.ndarray)
@ -104,12 +112,12 @@ class TestTensorBoardPyTorchNumpy(BaseTestCase):
def test_pytorch_write(self):
with self.createSummaryWriter() as w:
w.add_scalar('scalar', torch.autograd.Variable(torch.rand(1)), 0)
w.add_scalar("scalar", torch.autograd.Variable(torch.rand(1)), 0)
def test_pytorch_histogram(self):
with self.createSummaryWriter() as w:
w.add_histogram('float histogram', torch.rand((50,)))
w.add_histogram('int histogram', torch.randint(0, 100, (50,)))
w.add_histogram("float histogram", torch.rand((50,)))
w.add_histogram("int histogram", torch.randint(0, 100, (50,)))
def test_pytorch_histogram_raw(self):
with self.createSummaryWriter() as w:
@ -118,52 +126,59 @@ class TestTensorBoardPyTorchNumpy(BaseTestCase):
bins = [0.0, 0.25, 0.5, 0.75, 1.0]
counts, limits = np.histogram(floats, bins)
sum_sq = floats.dot(floats).item()
w.add_histogram_raw('float histogram raw',
min=floats.min().item(),
max=floats.max().item(),
num=num,
sum=floats.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(),
bucket_counts=counts.tolist())
w.add_histogram_raw(
"float histogram raw",
min=floats.min().item(),
max=floats.max().item(),
num=num,
sum=floats.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(),
bucket_counts=counts.tolist(),
)
ints = make_np(torch.randint(0, 100, (num,)))
bins = [0, 25, 50, 75, 100]
counts, limits = np.histogram(ints, bins)
sum_sq = ints.dot(ints).item()
w.add_histogram_raw('int histogram raw',
min=ints.min().item(),
max=ints.max().item(),
num=num,
sum=ints.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(),
bucket_counts=counts.tolist())
w.add_histogram_raw(
"int histogram raw",
min=ints.min().item(),
max=ints.max().item(),
num=num,
sum=ints.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(),
bucket_counts=counts.tolist(),
)
ints = torch.tensor(range(0, 100)).float()
nbins = 100
counts = torch.histc(ints, bins=nbins, min=0, max=99)
limits = torch.tensor(range(nbins))
sum_sq = ints.dot(ints).item()
w.add_histogram_raw('int histogram raw',
min=ints.min().item(),
max=ints.max().item(),
num=num,
sum=ints.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits.tolist(),
bucket_counts=counts.tolist())
w.add_histogram_raw(
"int histogram raw",
min=ints.min().item(),
max=ints.max().item(),
num=num,
sum=ints.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits.tolist(),
bucket_counts=counts.tolist(),
)
class TestTensorBoardUtils(BaseTestCase):
def test_to_HWC(self):
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'chw')
converted = convert_to_HWC(test_image, "chw")
self.assertEqual(converted.shape, (32, 32, 3))
test_image = np.random.randint(0, 256, size=(16, 3, 32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'nchw')
converted = convert_to_HWC(test_image, "nchw")
self.assertEqual(converted.shape, (64, 256, 3))
test_image = np.random.randint(0, 256, size=(32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'hw')
converted = convert_to_HWC(test_image, "hw")
self.assertEqual(converted.shape, (32, 32, 3))
def test_convert_to_HWC_dtype_remains_same(self):
@ -171,10 +186,13 @@ class TestTensorBoardUtils(BaseTestCase):
# thus the scale_factor calculated for the image is 1
test_image = torch.tensor([[[[1, 2, 3], [4, 5, 6]]]], dtype=torch.uint8)
tensor = make_np(test_image)
tensor = convert_to_HWC(tensor, 'NCHW')
tensor = convert_to_HWC(tensor, "NCHW")
scale_factor = summary._calc_scale_factor(tensor)
self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1')
self.assertEqual(
scale_factor,
1,
msg="Values are already in [0, 255], scale factor should be 1",
)
def test_prepare_video(self):
# At each timeframe, the sum over all other
@ -183,7 +201,7 @@ class TestTensorBoardUtils(BaseTestCase):
(16, 30, 3, 28, 28),
(36, 30, 3, 28, 28),
(19, 29, 3, 23, 19),
(3, 3, 3, 3, 3)
(3, 3, 3, 3, 3),
]
for s in shapes:
V_input = np.random.random(s)
@ -205,6 +223,7 @@ class TestTensorBoardUtils(BaseTestCase):
y = np.reshape(V_after[f], newshape=(-1))
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
true_positive_counts = [75, 64, 21, 5, 0]
@ -214,6 +233,7 @@ false_negative_counts = [0, 11, 54, 70, 75]
precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0]
recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0]
class TestTensorBoardWriter(BaseTestCase):
def test_writer(self):
with self.createSummaryWriter() as writer:
@ -221,49 +241,66 @@ class TestTensorBoardWriter(BaseTestCase):
n_iter = 0
writer.add_hparams(
{'lr': 0.1, 'bsize': 1},
{'hparam/accuracy': 10, 'hparam/loss': 10}
{"lr": 0.1, "bsize": 1}, {"hparam/accuracy": 10, "hparam/loss": 10}
)
writer.add_scalar("data/scalar_systemtime", 0.1, n_iter)
writer.add_scalar("data/scalar_customtime", 0.2, n_iter, walltime=n_iter)
writer.add_scalar("data/new_style", 0.2, n_iter, new_style=True)
writer.add_scalars(
"data/scalar_group",
{
"xsinx": n_iter * np.sin(n_iter),
"xcosx": n_iter * np.cos(n_iter),
"arctanx": np.arctan(n_iter),
},
n_iter,
)
writer.add_scalar('data/scalar_systemtime', 0.1, n_iter)
writer.add_scalar('data/scalar_customtime', 0.2, n_iter, walltime=n_iter)
writer.add_scalar('data/new_style', 0.2, n_iter, new_style=True)
writer.add_scalars('data/scalar_group', {
"xsinx": n_iter * np.sin(n_iter),
"xcosx": n_iter * np.cos(n_iter),
"arctanx": np.arctan(n_iter)
}, n_iter)
x = np.zeros((32, 3, 64, 64)) # output from network
writer.add_images('Image', x, n_iter) # Tensor
writer.add_image_with_boxes('imagebox',
np.zeros((3, 64, 64)),
np.array([[10, 10, 40, 40], [40, 40, 60, 60]]),
n_iter)
writer.add_images("Image", x, n_iter) # Tensor
writer.add_image_with_boxes(
"imagebox",
np.zeros((3, 64, 64)),
np.array([[10, 10, 40, 40], [40, 40, 60, 60]]),
n_iter,
)
x = np.zeros(sample_rate * 2)
writer.add_audio('myAudio', x, n_iter)
writer.add_video('myVideo', np.random.rand(16, 48, 1, 28, 28).astype(np.float32), n_iter)
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
writer.add_text('markdown Text', '''a|b\n-|-\nc|d''', n_iter)
writer.add_histogram('hist', np.random.rand(100, 100), n_iter)
writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(
100), n_iter) # needs tensorboard 0.4RC or later
writer.add_pr_curve_raw('prcurve with raw data', true_positive_counts,
false_positive_counts,
true_negative_counts,
false_negative_counts,
precision,
recall, n_iter)
writer.add_audio("myAudio", x, n_iter)
writer.add_video(
"myVideo", np.random.rand(16, 48, 1, 28, 28).astype(np.float32), n_iter
)
writer.add_text("Text", "text logged at step:" + str(n_iter), n_iter)
writer.add_text("markdown Text", """a|b\n-|-\nc|d""", n_iter)
writer.add_histogram("hist", np.random.rand(100, 100), n_iter)
writer.add_pr_curve(
"xoxo", np.random.randint(2, size=100), np.random.rand(100), n_iter
) # needs tensorboard 0.4RC or later
writer.add_pr_curve_raw(
"prcurve with raw data",
true_positive_counts,
false_positive_counts,
true_negative_counts,
false_negative_counts,
precision,
recall,
n_iter,
)
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int)
v = np.array(
[[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float
)
c = np.array(
[[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int
)
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
writer.add_mesh('my_mesh', vertices=v, colors=c, faces=f)
writer.add_mesh("my_mesh", vertices=v, colors=c, faces=f)
class TestTensorBoardSummaryWriter(BaseTestCase):
def test_summary_writer_ctx(self):
# after using a SummaryWriter as a ctx it should be closed
with self.createSummaryWriter() as writer:
writer.add_scalar('test', 1)
writer.add_scalar("test", 1)
self.assertIs(writer.file_writer, None)
def test_summary_writer_close(self):
@ -280,158 +317,208 @@ class TestTensorBoardSummaryWriter(BaseTestCase):
def test_pathlib(self):
import pathlib
p = pathlib.Path('./pathlibtest' + str(uuid.uuid4()))
p = pathlib.Path("./pathlibtest" + str(uuid.uuid4()))
with SummaryWriter(p) as writer:
writer.add_scalar('test', 1)
writer.add_scalar("test", 1)
import shutil
shutil.rmtree(str(p))
class TestTensorBoardEmbedding(BaseTestCase):
def test_embedding(self):
w = self.createSummaryWriter()
all_features = torch.tensor([[1., 2., 3.], [5., 4., 1.], [3., 7., 7.]])
all_labels = torch.tensor([33., 44., 55.])
all_features = torch.tensor([[1.0, 2.0, 3.0], [5.0, 4.0, 1.0], [3.0, 7.0, 7.0]])
all_labels = torch.tensor([33.0, 44.0, 55.0])
all_images = torch.zeros(3, 3, 5, 5)
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
global_step=2)
w.add_embedding(
all_features, metadata=all_labels, label_img=all_images, global_step=2
)
dataset_label = ['test'] * 2 + ['train'] * 2
dataset_label = ["test"] * 2 + ["train"] * 2
all_labels = list(zip(all_labels, dataset_label))
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
metadata_header=['digit', 'dataset'],
global_step=2)
w.add_embedding(
all_features,
metadata=all_labels,
label_img=all_images,
metadata_header=["digit", "dataset"],
global_step=2,
)
# assert...
def test_embedding_64(self):
w = self.createSummaryWriter()
all_features = torch.tensor([[1., 2., 3.], [5., 4., 1.], [3., 7., 7.]])
all_labels = torch.tensor([33., 44., 55.])
all_features = torch.tensor([[1.0, 2.0, 3.0], [5.0, 4.0, 1.0], [3.0, 7.0, 7.0]])
all_labels = torch.tensor([33.0, 44.0, 55.0])
all_images = torch.zeros((3, 3, 5, 5), dtype=torch.float64)
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
global_step=2)
w.add_embedding(
all_features, metadata=all_labels, label_img=all_images, global_step=2
)
dataset_label = ['test'] * 2 + ['train'] * 2
dataset_label = ["test"] * 2 + ["train"] * 2
all_labels = list(zip(all_labels, dataset_label))
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
metadata_header=['digit', 'dataset'],
global_step=2)
w.add_embedding(
all_features,
metadata=all_labels,
label_img=all_images,
metadata_header=["digit", "dataset"],
global_step=2,
)
class TestTensorBoardSummary(BaseTestCase):
def test_uint8_image(self):
'''
"""
Tests that uint8 image (pixel values in [0, 255]) is not changed
'''
"""
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
scale_factor = summary._calc_scale_factor(test_image)
self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1')
self.assertEqual(
scale_factor,
1,
msg="Values are already in [0, 255], scale factor should be 1",
)
def test_float32_image(self):
'''
"""
Tests that float32 image (pixel values in [0, 1]) are scaled correctly
to [0, 255]
'''
"""
test_image = np.random.rand(3, 32, 32).astype(np.float32)
scale_factor = summary._calc_scale_factor(test_image)
self.assertEqual(scale_factor, 255, msg='Values are in [0, 1], scale factor should be 255')
self.assertEqual(
scale_factor, 255, msg="Values are in [0, 1], scale factor should be 255"
)
def test_list_input(self):
with self.assertRaises(Exception) as e_info:
summary.histogram('dummy', [1, 3, 4, 5, 6], 'tensorflow')
summary.histogram("dummy", [1, 3, 4, 5, 6], "tensorflow")
def test_empty_input(self):
with self.assertRaises(Exception) as e_info:
summary.histogram('dummy', np.ndarray(0), 'tensorflow')
summary.histogram("dummy", np.ndarray(0), "tensorflow")
def test_image_with_boxes(self):
self.assertTrue(compare_image_proto(summary.image_boxes('dummy',
tensor_N(shape=(3, 32, 32)),
np.array([[10, 10, 40, 40]])),
self))
self.assertTrue(
compare_image_proto(
summary.image_boxes(
"dummy", tensor_N(shape=(3, 32, 32)), np.array([[10, 10, 40, 40]])
),
self,
)
)
def test_image_with_one_channel(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(1, 8, 8)),
dataformats='CHW'),
self)) # noqa: E131
self.assertTrue(
compare_image_proto(
summary.image("dummy", tensor_N(shape=(1, 8, 8)), dataformats="CHW"),
self,
)
) # noqa: E131
def test_image_with_one_channel_batched(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(2, 1, 8, 8)),
dataformats='NCHW'),
self)) # noqa: E131
self.assertTrue(
compare_image_proto(
summary.image(
"dummy", tensor_N(shape=(2, 1, 8, 8)), dataformats="NCHW"
),
self,
)
) # noqa: E131
def test_image_with_3_channel_batched(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(2, 3, 8, 8)),
dataformats='NCHW'),
self)) # noqa: E131
self.assertTrue(
compare_image_proto(
summary.image(
"dummy", tensor_N(shape=(2, 3, 8, 8)), dataformats="NCHW"
),
self,
)
) # noqa: E131
def test_image_without_channel(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(8, 8)),
dataformats='HW'),
self)) # noqa: E131
self.assertTrue(
compare_image_proto(
summary.image("dummy", tensor_N(shape=(8, 8)), dataformats="HW"), self
)
) # noqa: E131
def test_video(self):
try:
import moviepy # noqa: F401
except ImportError:
return
self.assertTrue(compare_proto(summary.video('dummy', tensor_N(shape=(4, 3, 1, 8, 8))), self))
summary.video('dummy', np.random.rand(16, 48, 1, 28, 28))
summary.video('dummy', np.random.rand(20, 7, 1, 8, 8))
self.assertTrue(
compare_proto(summary.video("dummy", tensor_N(shape=(4, 3, 1, 8, 8))), self)
)
summary.video("dummy", np.random.rand(16, 48, 1, 28, 28))
summary.video("dummy", np.random.rand(20, 7, 1, 8, 8))
def test_audio(self):
self.assertTrue(compare_proto(summary.audio('dummy', tensor_N(shape=(42,))), self))
self.assertTrue(
compare_proto(summary.audio("dummy", tensor_N(shape=(42,))), self)
)
def test_text(self):
self.assertTrue(compare_proto(summary.text('dummy', 'text 123'), self))
self.assertTrue(compare_proto(summary.text("dummy", "text 123"), self))
def test_histogram_auto(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='auto', max_bins=5), self))
self.assertTrue(
compare_proto(
summary.histogram(
"dummy", tensor_N(shape=(1024,)), bins="auto", max_bins=5
),
self,
)
)
def test_histogram_fd(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='fd', max_bins=5), self))
self.assertTrue(
compare_proto(
summary.histogram(
"dummy", tensor_N(shape=(1024,)), bins="fd", max_bins=5
),
self,
)
)
def test_histogram_doane(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='doane', max_bins=5), self))
self.assertTrue(
compare_proto(
summary.histogram(
"dummy", tensor_N(shape=(1024,)), bins="doane", max_bins=5
),
self,
)
)
def test_custom_scalars(self):
layout = {
'Taiwan': {
'twse': ['Multiline', ['twse/0050', 'twse/2330']]
"Taiwan": {"twse": ["Multiline", ["twse/0050", "twse/2330"]]},
"USA": {
"dow": ["Margin", ["dow/aaa", "dow/bbb", "dow/ccc"]],
"nasdaq": ["Margin", ["nasdaq/aaa", "nasdaq/bbb", "nasdaq/ccc"]],
},
'USA': {
'dow': ['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']],
'nasdaq': ['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]
}
}
summary.custom_scalars(layout) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
summary.custom_scalars(
layout
) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
def test_hparams_smoke(self):
hp = {'lr': 0.1, 'bsize': 4}
mt = {'accuracy': 0.1, 'loss': 10}
summary.hparams(hp, mt) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
hp = {"lr": 0.1, "bsize": 4}
mt = {"accuracy": 0.1, "loss": 10}
summary.hparams(
hp, mt
) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
hp = {'use_magic': True, 'init_string': "42"}
mt = {'accuracy': 0.1, 'loss': 10}
hp = {"use_magic": True, "init_string": "42"}
mt = {"accuracy": 0.1, "loss": 10}
summary.hparams(hp, mt)
mt = {'accuracy': torch.zeros(1), 'loss': torch.zeros(1)}
mt = {"accuracy": torch.zeros(1), "loss": torch.zeros(1)}
summary.hparams(hp, mt)
def test_hparams_wrong_parameter(self):
@ -440,25 +527,25 @@ class TestTensorBoardSummary(BaseTestCase):
with self.assertRaises(TypeError):
summary.hparams({}, [])
with self.assertRaises(ValueError):
res = summary.hparams({'pytorch': [1, 2]}, {'accuracy': 2.0})
res = summary.hparams({"pytorch": [1, 2]}, {"accuracy": 2.0})
# metric data is used in writer.py so the code path is different, which leads to different exception type.
with self.assertRaises(NotImplementedError):
with self.createSummaryWriter() as writer:
writer.add_hparams({'pytorch': 1.0}, {'accuracy': [1, 2]})
writer.add_hparams({"pytorch": 1.0}, {"accuracy": [1, 2]})
def test_hparams_number(self):
hp = {'lr': 0.1}
mt = {'accuracy': 0.1}
hp = {"lr": 0.1}
mt = {"accuracy": 0.1}
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
def test_hparams_bool(self):
hp = {'bool_var': True}
mt = {'accuracy': 0.1}
hp = {"bool_var": True}
mt = {"accuracy": 0.1}
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
def test_hparams_string(self):
hp = {'string_var': "hi"}
mt = {'accuracy': 0.1}
hp = {"string_var": "hi"}
mt = {"accuracy": 0.1}
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
def test_hparams_domain_discrete(self):
@ -479,30 +566,35 @@ class TestTensorBoardSummary(BaseTestCase):
def test_mesh(self):
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int)
c = np.array(
[[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int
)
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
mesh = summary.mesh('my_mesh', vertices=v, colors=c, faces=f, config_dict=None)
mesh = summary.mesh("my_mesh", vertices=v, colors=c, faces=f, config_dict=None)
self.assertTrue(compare_proto(mesh, self))
def test_scalar_new_style(self):
scalar = summary.scalar('test_scalar', 1.0, new_style=True)
scalar = summary.scalar("test_scalar", 1.0, new_style=True)
self.assertTrue(compare_proto(scalar, self))
def remove_whitespace(string):
return string.replace(' ', '').replace('\t', '').replace('\n', '')
return string.replace(" ", "").replace("\t", "").replace("\n", "")
def get_expected_file(function_ptr):
module_id = function_ptr.__class__.__module__
test_file = sys.modules[module_id].__file__
# Look for the .py file (since __file__ could be pyc).
test_file = ".".join(test_file.split('.')[:-1]) + '.py'
test_file = ".".join(test_file.split(".")[:-1]) + ".py"
# Use realpath to follow symlinks appropriately.
test_dir = os.path.dirname(os.path.realpath(test_file))
functionName = function_ptr.id().split('.')[-1]
return os.path.join(test_dir,
"expect",
'TestTensorBoard.' + functionName + ".expect")
functionName = function_ptr.id().split(".")[-1]
return os.path.join(
test_dir, "expect", "TestTensorBoard." + functionName + ".expect"
)
def read_expected_content(function_ptr):
expected_file = get_expected_file(function_ptr)
@ -510,6 +602,7 @@ def read_expected_content(function_ptr):
with open(expected_file, "r") as f:
return f.read()
def compare_image_proto(actual_proto, function_ptr):
expected_str = read_expected_content(function_ptr)
expected_proto = Summary()
@ -520,23 +613,26 @@ def compare_image_proto(actual_proto, function_ptr):
expected_img = Image.open(io.BytesIO(expected.image.encoded_image_string))
return (
actual.tag == expected.tag and
actual.image.height == expected.image.height and
actual.image.width == expected.image.width and
actual.image.colorspace == expected.image.colorspace and
actual_img == expected_img
actual.tag == expected.tag
and actual.image.height == expected.image.height
and actual.image.width == expected.image.width
and actual.image.colorspace == expected.image.colorspace
and actual_img == expected_img
)
def compare_proto(str_to_compare, function_ptr):
expected = read_expected_content(function_ptr)
str_to_compare = str(str_to_compare)
return remove_whitespace(str_to_compare) == remove_whitespace(expected)
def write_proto(str_to_compare, function_ptr):
expected_file = get_expected_file(function_ptr)
with open(expected_file, 'w') as f:
with open(expected_file, "w") as f:
f.write(str(str_to_compare))
class TestTensorBoardPytorchGraph(BaseTestCase):
def test_pytorch_graph(self):
dummy_input = (torch.zeros(1, 3),)
@ -567,7 +663,8 @@ class TestTensorBoardPytorchGraph(BaseTestCase):
self.assertEquals(expected_node.input, actual_node.input)
self.assertEquals(expected_node.device, actual_node.device)
self.assertEquals(
sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys()))
sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys())
)
def test_mlp_graph(self):
dummy_input = (torch.zeros(2, 1, 28, 28),)
@ -587,8 +684,7 @@ class TestTensorBoardPytorchGraph(BaseTestCase):
self.fc3 = torch.nn.Linear(1200, 10)
def forward(self, x, update_batch_stats=True):
h = torch.nn.functional.relu(
self.fc1(x.view(-1, self.input_len)))
h = torch.nn.functional.relu(self.fc1(x.view(-1, self.input_len)))
h = self.fc2(h)
h = torch.nn.functional.relu(h)
h = self.fc3(h)
@ -607,42 +703,45 @@ class TestTensorBoardPytorchGraph(BaseTestCase):
@skipIfNoTorchVision
def test_torchvision_smoke(self):
model_input_shapes = {
'alexnet': (2, 3, 224, 224),
'resnet34': (2, 3, 224, 224),
'resnet152': (2, 3, 224, 224),
'densenet121': (2, 3, 224, 224),
'vgg16': (2, 3, 224, 224),
'vgg19': (2, 3, 224, 224),
'vgg16_bn': (2, 3, 224, 224),
'vgg19_bn': (2, 3, 224, 224),
'mobilenet_v2': (2, 3, 224, 224),
"alexnet": (2, 3, 224, 224),
"resnet34": (2, 3, 224, 224),
"resnet152": (2, 3, 224, 224),
"densenet121": (2, 3, 224, 224),
"vgg16": (2, 3, 224, 224),
"vgg19": (2, 3, 224, 224),
"vgg16_bn": (2, 3, 224, 224),
"vgg19_bn": (2, 3, 224, 224),
"mobilenet_v2": (2, 3, 224, 224),
}
for model_name, input_shape in model_input_shapes.items():
with self.createSummaryWriter() as w:
model = getattr(torchvision.models, model_name)()
w.add_graph(model, torch.zeros(input_shape))
class TestTensorBoardFigure(BaseTestCase):
@skipIfNoMatplotlib
def test_figure(self):
writer = self.createSummaryWriter()
figure, axes = plt.figure(), plt.gca()
circle1 = plt.Circle((0.2, 0.5), 0.2, color='r')
circle2 = plt.Circle((0.8, 0.5), 0.2, color='g')
circle1 = plt.Circle((0.2, 0.5), 0.2, color="r")
circle2 = plt.Circle((0.8, 0.5), 0.2, color="g")
axes.add_patch(circle1)
axes.add_patch(circle2)
plt.axis('scaled')
plt.axis("scaled")
plt.tight_layout()
writer.add_figure("add_figure/figure", figure, 0, close=False)
self.assertTrue(plt.fignum_exists(figure.number))
writer.add_figure("add_figure/figure", figure, 1)
if matplotlib.__version__ != '3.3.0':
if matplotlib.__version__ != "3.3.0":
self.assertFalse(plt.fignum_exists(figure.number))
else:
print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163")
print(
"Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163"
)
writer.close()
@ -661,16 +760,23 @@ class TestTensorBoardFigure(BaseTestCase):
figures.append(figure)
writer.add_figure("add_figure/figure_list", figures, 0, close=False)
self.assertTrue(all([plt.fignum_exists(figure.number) is True for figure in figures])) # noqa: F812
self.assertTrue(
all([plt.fignum_exists(figure.number) is True for figure in figures])
) # noqa: F812
writer.add_figure("add_figure/figure_list", figures, 1)
if matplotlib.__version__ != '3.3.0':
self.assertTrue(all([plt.fignum_exists(figure.number) is False for figure in figures])) # noqa: F812
if matplotlib.__version__ != "3.3.0":
self.assertTrue(
all([plt.fignum_exists(figure.number) is False for figure in figures])
) # noqa: F812
else:
print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163")
print(
"Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163"
)
writer.close()
class TestTensorBoardNumpy(BaseTestCase):
def test_scalar(self):
res = make_np(1.1)
@ -687,16 +793,16 @@ class TestTensorBoardNumpy(BaseTestCase):
@skipIfNoCaffe2
def test_caffe2_np(self):
workspace.FeedBlob("testBlob", tensor_N(shape=(1, 3, 64, 64)))
self.assertIsInstance(make_np('testBlob'), np.ndarray)
self.assertIsInstance(make_np("testBlob"), np.ndarray)
@skipIfNoCaffe2
def test_caffe2_np_expect_fail(self):
with self.assertRaises(RuntimeError):
res = make_np('This_blob_does_not_exist')
res = make_np("This_blob_does_not_exist")
def test_pytorch_np_expect_fail(self):
with self.assertRaises(NotImplementedError):
res = make_np({'pytorch': 1.0})
res = make_np({"pytorch": 1.0})
@skipIfNoCaffe2
@unittest.skipIf(TEST_WITH_ASAN, "Caffe2 failure with ASAN")
@ -707,20 +813,20 @@ class TestTensorBoardNumpy(BaseTestCase):
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = brew.conv(model, "data", 'conv1', dim_in=1, dim_out=20, kernel=5)
conv1 = brew.conv(model, "data", "conv1", dim_in=1, dim_out=20, kernel=5)
# Image size: 24 x 24 -> 12 x 12
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
pool1 = brew.max_pool(model, conv1, "pool1", kernel=2, stride=2)
# Image size: 12 x 12 -> 8 x 8
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5)
conv2 = brew.conv(model, pool1, "conv2", dim_in=20, dim_out=100, kernel=5)
# Image size: 8 x 8 -> 4 x 4
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
pool2 = brew.max_pool(model, conv2, "pool2", kernel=2, stride=2)
with core.NameScope("classifier"):
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500)
fc3 = brew.fc(model, pool2, "fc3", dim_in=100 * 4 * 4, dim_out=500)
relu = brew.relu(model, fc3, fc3)
pred = brew.fc(model, relu, 'pred', 500, 10)
softmax = brew.softmax(model, pred, 'softmax')
xent = model.LabelCrossEntropy([softmax, "label"], 'xent')
pred = brew.fc(model, relu, "pred", 500, 10)
softmax = brew.softmax(model, pred, "softmax")
xent = model.LabelCrossEntropy([softmax, "label"], "xent")
# compute the expected loss
loss = model.AveragedLoss(xent, "loss")
model.net.RunAllOnMKL()
@ -759,5 +865,6 @@ class TestTensorBoardNumpy(BaseTestCase):
)
compare_proto(graph, self)
if __name__ == '__main__':
if __name__ == "__main__":
run_tests()