mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle Reviewed By: zertosh Differential Revision: D30279364 fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
This commit is contained in:
committed by
Facebook GitHub Bot
parent
aac3c7bd06
commit
b004307252
@ -1,17 +1,27 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from itertools import product, combinations, permutations, chain
|
||||
from functools import partial
|
||||
import random
|
||||
import warnings
|
||||
from functools import partial
|
||||
from itertools import product, combinations, permutations, chain
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch._six import nan
|
||||
from torch.testing._internal.common_utils import (
|
||||
TestCase, run_tests, make_tensor, torch_to_numpy_dtype_dict)
|
||||
from torch.testing._internal.common_device_type import (
|
||||
instantiate_device_type_tests, onlyCPU, onlyCUDA, dtypes, onlyOnCPUAndCUDA,
|
||||
dtypesIfCPU, dtypesIfCUDA, largeTensorTest)
|
||||
instantiate_device_type_tests,
|
||||
onlyCPU,
|
||||
onlyCUDA,
|
||||
dtypes,
|
||||
onlyOnCPUAndCUDA,
|
||||
dtypesIfCPU,
|
||||
dtypesIfCUDA,
|
||||
largeTensorTest,
|
||||
)
|
||||
from torch.testing._internal.common_utils import (
|
||||
TestCase,
|
||||
run_tests,
|
||||
make_tensor,
|
||||
torch_to_numpy_dtype_dict,
|
||||
)
|
||||
|
||||
# TODO: replace with make_tensor
|
||||
def _generate_input(shape, dtype, device, with_extremal):
|
||||
@ -24,17 +34,19 @@ def _generate_input(shape, dtype, device, with_extremal):
|
||||
x = torch.randn(*shape, device=device) * random.randint(30, 100)
|
||||
x = x.to(torch.bfloat16)
|
||||
else:
|
||||
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100)
|
||||
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(
|
||||
30, 100
|
||||
)
|
||||
x[torch.randn(*shape) > 0.5] = 0
|
||||
if with_extremal and dtype.is_floating_point:
|
||||
# Use extremal values
|
||||
x[torch.randn(*shape) > 0.5] = float('nan')
|
||||
x[torch.randn(*shape) > 0.5] = float('inf')
|
||||
x[torch.randn(*shape) > 0.5] = float('-inf')
|
||||
x[torch.randn(*shape) > 0.5] = float("nan")
|
||||
x[torch.randn(*shape) > 0.5] = float("inf")
|
||||
x[torch.randn(*shape) > 0.5] = float("-inf")
|
||||
elif with_extremal and dtype.is_complex:
|
||||
x[torch.randn(*shape) > 0.5] = complex('nan')
|
||||
x[torch.randn(*shape) > 0.5] = complex('inf')
|
||||
x[torch.randn(*shape) > 0.5] = complex('-inf')
|
||||
x[torch.randn(*shape) > 0.5] = complex("nan")
|
||||
x[torch.randn(*shape) > 0.5] = complex("inf")
|
||||
x[torch.randn(*shape) > 0.5] = complex("-inf")
|
||||
elif dtype == torch.bool:
|
||||
x = torch.zeros(shape, dtype=dtype, device=device)
|
||||
x[torch.randn(*shape) > 0.5] = True
|
||||
@ -43,6 +55,7 @@ def _generate_input(shape, dtype, device, with_extremal):
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class TestShapeOps(TestCase):
|
||||
|
||||
# TODO: update to work on CUDA, too
|
||||
@ -65,7 +78,7 @@ class TestShapeOps(TestCase):
|
||||
tensor0D = torch.tensor(list0D)
|
||||
self.assertEqual(tensor0D.tolist(), list0D)
|
||||
|
||||
table1D = [1., 2., 3.]
|
||||
table1D = [1.0, 2.0, 3.0]
|
||||
tensor1D = torch.tensor(table1D)
|
||||
storage = torch.Storage(table1D)
|
||||
self.assertEqual(tensor1D.tolist(), table1D)
|
||||
@ -96,19 +109,29 @@ class TestShapeOps(TestCase):
|
||||
fn(x, 0, 5)
|
||||
|
||||
# Mismatch in size of `source` and `destination`
|
||||
with self.assertRaisesRegex(RuntimeError, "movedim: Invalid source or destination dims:"):
|
||||
fn(x, (1, 0), (0, ))
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError, "movedim: Invalid source or destination dims:"
|
||||
):
|
||||
fn(x, (1, 0), (0,))
|
||||
|
||||
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `source`"):
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError, "movedim: repeated dim in `source`"
|
||||
):
|
||||
fn(x, (0, 0), (0, 1))
|
||||
|
||||
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `source`"):
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError, "movedim: repeated dim in `source`"
|
||||
):
|
||||
fn(x, (0, 1, 0), (0, 1, 2))
|
||||
|
||||
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `destination`"):
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError, "movedim: repeated dim in `destination`"
|
||||
):
|
||||
fn(x, (0, 1), (1, 1))
|
||||
|
||||
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `destination`"):
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError, "movedim: repeated dim in `destination`"
|
||||
):
|
||||
fn(x, (0, 1, 2), (1, 0, 1))
|
||||
|
||||
@dtypes(torch.int64, torch.float, torch.complex128)
|
||||
@ -131,8 +154,12 @@ class TestShapeOps(TestCase):
|
||||
|
||||
# Integer `source` and `destination`
|
||||
torch_fn = partial(fn, source=src_dim, destination=dst_dim)
|
||||
np_fn = partial(np.moveaxis, source=src_dim, destination=dst_dim)
|
||||
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
|
||||
np_fn = partial(
|
||||
np.moveaxis, source=src_dim, destination=dst_dim
|
||||
)
|
||||
self.compare_with_numpy(
|
||||
torch_fn, np_fn, x, device=None, dtype=None
|
||||
)
|
||||
|
||||
if nd == 0:
|
||||
continue
|
||||
@ -142,9 +169,13 @@ class TestShapeOps(TestCase):
|
||||
sequence[random_idx] = sequence[random_idx] - nd
|
||||
return tuple(src_sequence)
|
||||
|
||||
for src_sequence in permutations(range(nd), r=random.randint(1, nd)):
|
||||
for src_sequence in permutations(
|
||||
range(nd), r=random.randint(1, nd)
|
||||
):
|
||||
# Sequence `source` and `destination`
|
||||
dst_sequence = tuple(random.sample(range(nd), len(src_sequence)))
|
||||
dst_sequence = tuple(
|
||||
random.sample(range(nd), len(src_sequence))
|
||||
)
|
||||
|
||||
# Randomly change a dim to a negative dim representation of itself.
|
||||
random_prob = random.random()
|
||||
@ -160,9 +191,15 @@ class TestShapeOps(TestCase):
|
||||
random_idx = random.randint(0, len(src_sequence) - 1)
|
||||
src_sequence = make_index_negative(src_sequence, random_idx)
|
||||
|
||||
torch_fn = partial(fn, source=src_sequence, destination=dst_sequence)
|
||||
np_fn = partial(np.moveaxis, source=src_sequence, destination=dst_sequence)
|
||||
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
|
||||
torch_fn = partial(
|
||||
fn, source=src_sequence, destination=dst_sequence
|
||||
)
|
||||
np_fn = partial(
|
||||
np.moveaxis, source=src_sequence, destination=dst_sequence
|
||||
)
|
||||
self.compare_with_numpy(
|
||||
torch_fn, np_fn, x, device=None, dtype=None
|
||||
)
|
||||
|
||||
# Move dim to same position
|
||||
x = torch.randn(2, 3, 5, 7, 11)
|
||||
@ -207,10 +244,7 @@ class TestShapeOps(TestCase):
|
||||
def test_diagonal_multidim(self, device, dtype):
|
||||
x = torch.randn(10, 11, 12, 13, dtype=dtype, device=device)
|
||||
xn = x.numpy()
|
||||
for args in [(2, 2, 3),
|
||||
(2,),
|
||||
(-2, 1, 2),
|
||||
(0, -2, -1)]:
|
||||
for args in [(2, 2, 3), (2,), (-2, 1, 2), (0, -2, -1)]:
|
||||
result = torch.diagonal(x, *args)
|
||||
expected = xn.diagonal(*args)
|
||||
self.assertEqual(expected.shape, result.shape)
|
||||
@ -223,9 +257,19 @@ class TestShapeOps(TestCase):
|
||||
self.assertEqual(expected, result)
|
||||
|
||||
@onlyOnCPUAndCUDA
|
||||
@dtypesIfCPU(*torch.testing.get_all_dtypes(include_complex=False, include_bool=False, include_half=False,
|
||||
include_bfloat16=False))
|
||||
@dtypesIfCUDA(*torch.testing.get_all_dtypes(include_complex=False, include_bool=False, include_bfloat16=False))
|
||||
@dtypesIfCPU(
|
||||
*torch.testing.get_all_dtypes(
|
||||
include_complex=False,
|
||||
include_bool=False,
|
||||
include_half=False,
|
||||
include_bfloat16=False,
|
||||
)
|
||||
)
|
||||
@dtypesIfCUDA(
|
||||
*torch.testing.get_all_dtypes(
|
||||
include_complex=False, include_bool=False, include_bfloat16=False
|
||||
)
|
||||
)
|
||||
def test_trace(self, device, dtype):
|
||||
def test(shape):
|
||||
tensor = make_tensor(shape, device, dtype, low=-9, high=9)
|
||||
@ -265,14 +309,22 @@ class TestShapeOps(TestCase):
|
||||
max_vals = max_vals.cpu().numpy()
|
||||
|
||||
# Use NumPy implementation as reference
|
||||
X_clamped = torch.tensor(np.clip(X.cpu().numpy(), a_min=min_vals, a_max=max_vals), device=device)
|
||||
X_clamped = torch.tensor(
|
||||
np.clip(X.cpu().numpy(), a_min=min_vals, a_max=max_vals), device=device
|
||||
)
|
||||
return X, X_clamped
|
||||
|
||||
# Tests clamp and its alias, clip
|
||||
@dtypes(torch.int64, torch.float32)
|
||||
def test_clamp(self, device, dtype):
|
||||
op_list = (torch.clamp, torch.Tensor.clamp, torch.Tensor.clamp_,
|
||||
torch.clip, torch.Tensor.clip, torch.Tensor.clip_)
|
||||
op_list = (
|
||||
torch.clamp,
|
||||
torch.Tensor.clamp,
|
||||
torch.Tensor.clamp_,
|
||||
torch.clip,
|
||||
torch.Tensor.clip,
|
||||
torch.Tensor.clip_,
|
||||
)
|
||||
|
||||
# min/max argument product
|
||||
args = product((-10, None), (10, None))
|
||||
@ -282,10 +334,9 @@ class TestShapeOps(TestCase):
|
||||
if min_val is None and max_val is None:
|
||||
continue
|
||||
|
||||
X, Y_expected = self.generate_clamp_baseline(device, dtype,
|
||||
min_vals=min_val,
|
||||
max_vals=max_val,
|
||||
with_nans=False)
|
||||
X, Y_expected = self.generate_clamp_baseline(
|
||||
device, dtype, min_vals=min_val, max_vals=max_val, with_nans=False
|
||||
)
|
||||
|
||||
# Test op
|
||||
X1 = X.clone() # So that the in-place ops do not change X
|
||||
@ -299,8 +350,14 @@ class TestShapeOps(TestCase):
|
||||
self.assertEqual(Y_expected, Y_out)
|
||||
|
||||
def test_clamp_propagates_nans(self, device):
|
||||
op_list = (torch.clamp, torch.Tensor.clamp, torch.Tensor.clamp_,
|
||||
torch.clip, torch.Tensor.clip, torch.Tensor.clip_)
|
||||
op_list = (
|
||||
torch.clamp,
|
||||
torch.Tensor.clamp,
|
||||
torch.Tensor.clamp_,
|
||||
torch.clip,
|
||||
torch.Tensor.clip,
|
||||
torch.Tensor.clip_,
|
||||
)
|
||||
|
||||
# min/max argument product
|
||||
args = product((-10, None), (10, None))
|
||||
@ -310,10 +367,13 @@ class TestShapeOps(TestCase):
|
||||
if min_val is None and max_val is None:
|
||||
continue
|
||||
|
||||
X, Y_expected = self.generate_clamp_baseline(device, torch.float,
|
||||
min_vals=min_val,
|
||||
max_vals=max_val,
|
||||
with_nans=True)
|
||||
X, Y_expected = self.generate_clamp_baseline(
|
||||
device,
|
||||
torch.float,
|
||||
min_vals=min_val,
|
||||
max_vals=max_val,
|
||||
with_nans=True,
|
||||
)
|
||||
Y_expected = torch.isnan(Y_expected)
|
||||
|
||||
# Test op
|
||||
@ -329,7 +389,7 @@ class TestShapeOps(TestCase):
|
||||
|
||||
def test_clamp_raises_arg_errors(self, device):
|
||||
X = torch.randn(100, dtype=torch.float, device=device)
|
||||
error_msg = 'At least one of \'min\' or \'max\' must not be None'
|
||||
error_msg = "At least one of 'min' or 'max' must not be None"
|
||||
with self.assertRaisesRegex(RuntimeError, error_msg):
|
||||
X.clamp()
|
||||
with self.assertRaisesRegex(RuntimeError, error_msg):
|
||||
@ -364,18 +424,22 @@ class TestShapeOps(TestCase):
|
||||
self.assertEqual(in_t.flip(p_dims), out_t)
|
||||
if len(p_dims) > 0:
|
||||
# Wrap 1st dim
|
||||
self.assertEqual(in_t.flip((-n + p_dims[0],) + p_dims[1:]), out_t)
|
||||
self.assertEqual(
|
||||
in_t.flip((-n + p_dims[0],) + p_dims[1:]), out_t
|
||||
)
|
||||
|
||||
def gen_data():
|
||||
# Basic tests
|
||||
data = make_from_data([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2)
|
||||
nonctg = make_from_size((2, 2, 2), noncontiguous=True).copy_(data)
|
||||
|
||||
dims_result = ((0, make_from_data([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2)),
|
||||
(1, make_from_data([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2)),
|
||||
(2, make_from_data([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2)),
|
||||
((0, 1), make_from_data([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2)),
|
||||
((0, 1, 2), make_from_data([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2)))
|
||||
dims_result = (
|
||||
(0, make_from_data([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2)),
|
||||
(1, make_from_data([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2)),
|
||||
(2, make_from_data([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2)),
|
||||
((0, 1), make_from_data([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2)),
|
||||
((0, 1, 2), make_from_data([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2)),
|
||||
)
|
||||
for in_tensor, (dims, out_tensor) in product((data, nonctg), dims_result):
|
||||
yield in_tensor, dims, out_tensor
|
||||
|
||||
@ -388,7 +452,9 @@ class TestShapeOps(TestCase):
|
||||
yield in_t, 1, in_t
|
||||
|
||||
# Transposed
|
||||
in_t = make_from_data([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2).transpose(0, 1)
|
||||
in_t = (
|
||||
make_from_data([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2).transpose(0, 1)
|
||||
)
|
||||
dims = (0, 1, 2)
|
||||
out_t = make_from_data([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2)
|
||||
yield in_t, dims, out_t
|
||||
@ -431,7 +497,9 @@ class TestShapeOps(TestCase):
|
||||
size = [2, 3, 4]
|
||||
data = make_from_size(size)
|
||||
possible_dims = range(len(size))
|
||||
test_dims = chain(combinations(possible_dims, 1), combinations(possible_dims, 2))
|
||||
test_dims = chain(
|
||||
combinations(possible_dims, 1), combinations(possible_dims, 2)
|
||||
)
|
||||
|
||||
for dims in test_dims:
|
||||
self.assertEqual(size, list(data.flip(dims).size()))
|
||||
@ -450,7 +518,6 @@ class TestShapeOps(TestCase):
|
||||
self.assertRaises(IndexError, lambda: data.flip(0, 1, 2, 3))
|
||||
self.assertRaises(IndexError, lambda: data.flip(3))
|
||||
|
||||
|
||||
def _rand_shape(self, dim, min_size, max_size):
|
||||
return tuple(torch.randint(min_size, max_size + 1, (dim,)))
|
||||
|
||||
@ -471,9 +538,9 @@ class TestShapeOps(TestCase):
|
||||
self.compare_with_numpy(torch_fn, np_fn, data)
|
||||
|
||||
@onlyCUDA # CPU is too slow
|
||||
@largeTensorTest('17GB') # 4 tensors of 4GB (in, out) x (torch, numpy) + 1GB
|
||||
@largeTensorTest("17GB") # 4 tensors of 4GB (in, out) x (torch, numpy) + 1GB
|
||||
def test_flip_large_tensor(self, device):
|
||||
t_in = torch.empty(2**32 + 1, dtype=torch.uint8).random_()
|
||||
t_in = torch.empty(2 ** 32 + 1, dtype=torch.uint8).random_()
|
||||
torch_fn = partial(torch.flip, dims=(0,))
|
||||
np_fn = partial(np.flip, axis=0)
|
||||
self.compare_with_numpy(torch_fn, np_fn, t_in)
|
||||
@ -534,7 +601,9 @@ class TestShapeOps(TestCase):
|
||||
|
||||
# test tensor with more than 2D
|
||||
data = torch.arange(1, 9, device=device).view(2, 2, 2)
|
||||
self.assertEqual(torch.tensor([2, 4, 1, 3, 6, 8, 5, 7]).view(2, 2, 2), data.rot90(1, [1, 2]))
|
||||
self.assertEqual(
|
||||
torch.tensor([2, 4, 1, 3, 6, 8, 5, 7]).view(2, 2, 2), data.rot90(1, [1, 2])
|
||||
)
|
||||
self.assertEqual(data.rot90(1, [1, -1]), data.rot90(1, [1, 2]))
|
||||
|
||||
# test for errors
|
||||
@ -580,7 +649,9 @@ class TestShapeOps(TestCase):
|
||||
return torch.randint(2, shape, device=device, dtype=dtype)
|
||||
else:
|
||||
# windows does not work for bfloat16 randing
|
||||
return torch.randint(2, shape, device=device, dtype=torch.float).to(dtype)
|
||||
return torch.randint(2, shape, device=device, dtype=torch.float).to(
|
||||
dtype
|
||||
)
|
||||
|
||||
for shape in shapes:
|
||||
tensor = gen_nontrivial_input(shape, dtype, device)
|
||||
@ -588,20 +659,28 @@ class TestShapeOps(TestCase):
|
||||
dst2 = tensor.nonzero(as_tuple=False)
|
||||
dst3 = torch.empty([], dtype=torch.long, device=device)
|
||||
torch.nonzero(tensor, out=dst3)
|
||||
if self.device_type != 'xla':
|
||||
if self.device_type != "xla":
|
||||
# xla does not raise runtime error
|
||||
self.assertRaisesRegex(
|
||||
RuntimeError,
|
||||
"scalar type Long",
|
||||
lambda: torch.nonzero(tensor, out=torch.empty([], dtype=torch.float, device=device))
|
||||
lambda: torch.nonzero(
|
||||
tensor, out=torch.empty([], dtype=torch.float, device=device)
|
||||
),
|
||||
)
|
||||
if self.device_type == 'cuda':
|
||||
if self.device_type == "cuda":
|
||||
self.assertRaisesRegex(
|
||||
RuntimeError,
|
||||
"on the same device",
|
||||
lambda: torch.nonzero(tensor, out=torch.empty([], dtype=torch.long))
|
||||
lambda: torch.nonzero(
|
||||
tensor, out=torch.empty([], dtype=torch.long)
|
||||
),
|
||||
)
|
||||
np_array = tensor.cpu().numpy() if dtype != torch.bfloat16 else tensor.float().cpu().numpy()
|
||||
np_array = (
|
||||
tensor.cpu().numpy()
|
||||
if dtype != torch.bfloat16
|
||||
else tensor.float().cpu().numpy()
|
||||
)
|
||||
np_result = torch.from_numpy(np.stack(np_array.nonzero())).t()
|
||||
self.assertEqual(dst1.cpu(), np_result, atol=0, rtol=0)
|
||||
self.assertEqual(dst2.cpu(), np_result, atol=0, rtol=0)
|
||||
@ -620,7 +699,9 @@ class TestShapeOps(TestCase):
|
||||
with self.assertRaises(RuntimeError):
|
||||
torch.nonzero(t, as_tuple=True, out=out)
|
||||
|
||||
self.assertEqual(torch.nonzero(t, as_tuple=False, out=out), torch.nonzero(t, out=out))
|
||||
self.assertEqual(
|
||||
torch.nonzero(t, as_tuple=False, out=out), torch.nonzero(t, out=out)
|
||||
)
|
||||
|
||||
# Verifies that JIT script cannot handle the as_tuple kwarg
|
||||
# See Issue https://github.com/pytorch/pytorch/issues/45499.
|
||||
@ -648,7 +729,9 @@ class TestShapeOps(TestCase):
|
||||
def test_nonzero_discontiguous(self, device):
|
||||
shape = (4, 4)
|
||||
tensor = torch.randint(2, shape, device=device)
|
||||
tensor_nc = torch.empty(shape[0], shape[1] * 2, device=device)[:, ::2].copy_(tensor)
|
||||
tensor_nc = torch.empty(shape[0], shape[1] * 2, device=device)[:, ::2].copy_(
|
||||
tensor
|
||||
)
|
||||
dst1 = tensor.nonzero(as_tuple=False)
|
||||
dst2 = tensor_nc.nonzero(as_tuple=False)
|
||||
self.assertEqual(dst1, dst2, atol=0, rtol=0)
|
||||
@ -659,7 +742,9 @@ class TestShapeOps(TestCase):
|
||||
self.assertEqual(data_ptr, dst3.data_ptr())
|
||||
self.assertEqual(dst1, dst3, atol=0, rtol=0)
|
||||
# discontiguous out
|
||||
dst4 = torch.empty(dst1.size(0), dst1.size(1) * 2, dtype=torch.long, device=device)[:, ::2]
|
||||
dst4 = torch.empty(
|
||||
dst1.size(0), dst1.size(1) * 2, dtype=torch.long, device=device
|
||||
)[:, ::2]
|
||||
data_ptr = dst4.data_ptr()
|
||||
strides = dst4.stride()
|
||||
torch.nonzero(tensor, out=dst4)
|
||||
@ -672,7 +757,8 @@ class TestShapeOps(TestCase):
|
||||
nz = x.nonzero()
|
||||
self.assertFalse(nz.requires_grad)
|
||||
|
||||
|
||||
instantiate_device_type_tests(TestShapeOps, globals())
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
|
Reference in New Issue
Block a user