mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[inductor][aten] treat like a template in GEMMs (#161342)
# why - central point to analyze and override all generated choices # what - add a pseudo heuristic for aten that just yields a single, empty kwargs - add a pseudo heuristic with the bias_addmm logic for it - add an addmm specific heuristic that yields a single choice, but also expands it with alpha and beta kwargs - replace all the aten.bind calls with V.choices.get_mm_configs using the now matching API for aten # testing ``` python3 -bb -m pytest test/inductor/test_max_autotune.py -v ``` Differential Revision: [D81520580](https://our.internmc.facebook.com/intern/diff/D81520580) Pull Request resolved: https://github.com/pytorch/pytorch/pull/161342 Approved by: https://github.com/jansel ghstack dependencies: #162075, #161340, #161341
This commit is contained in:
committed by
PyTorch MergeBot
parent
4902c76c65
commit
af590cb729
@ -420,11 +420,12 @@ def rand_strided(
|
||||
device: Union[str, torch.device] = "cpu",
|
||||
extra_size: int = 0,
|
||||
) -> torch.Tensor:
|
||||
needed_size = (
|
||||
sum((shape - 1) * stride for shape, stride in zip(size, stride))
|
||||
+ 1
|
||||
+ extra_size
|
||||
)
|
||||
needed_size = extra_size
|
||||
if all(s > 0 for s in size):
|
||||
# only need to allocate if all sizes are non-zero
|
||||
needed_size += (
|
||||
sum((shape - 1) * stride for shape, stride in zip(size, stride)) + 1
|
||||
)
|
||||
if dtype.is_floating_point:
|
||||
if dtype.itemsize == 1:
|
||||
"""
|
||||
|
Reference in New Issue
Block a user