[1/N] Decouple Flight Recorder from NCCL utils (#141648)

Part of the effort to make Flight Recorder device agnostic.

Step 1: Move it out of NCCLUtils.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141648
Approved by: https://github.com/fduwjj
This commit is contained in:
Ke Wen
2024-11-26 23:55:26 -08:00
committed by PyTorch MergeBot
parent fd553b9817
commit ad39a2fc46
7 changed files with 922 additions and 883 deletions

View File

@ -192,46 +192,6 @@ constexpr int64_t kCommInitBusyWaitMillis = 2;
} while (0)
namespace c10d {
#define DEFINE_CONSTANT(name, value) \
static c10::IValue name = value; \
static std::string name##_str = value;
// Update whenever changing contents or formatting of the dump
// (minor when adding fields, major when changing existing fields)
// Also update both JSON and Pickle dumps to make use of the newly defined
// field(s).
DEFINE_CONSTANT(version_val, "2.4")
DEFINE_CONSTANT(entries_key, "entries")
DEFINE_CONSTANT(nccl_comm_key, "nccl_comm_state")
DEFINE_CONSTANT(version_key, "version")
DEFINE_CONSTANT(pg_config_key, "pg_config")
DEFINE_CONSTANT(pg_status_key, "pg_status")
DEFINE_CONSTANT(record_id_key, "record_id")
DEFINE_CONSTANT(pg_id_key, "pg_id")
DEFINE_CONSTANT(pg_name_key, "process_group")
DEFINE_CONSTANT(collective_seq_id_key, "collective_seq_id")
DEFINE_CONSTANT(p2p_seq_id_key, "p2p_seq_id")
DEFINE_CONSTANT(is_p2p_key, "is_p2p")
DEFINE_CONSTANT(op_id_key, "op_id")
DEFINE_CONSTANT(profiling_name_key, "profiling_name")
DEFINE_CONSTANT(input_sizes_key, "input_sizes")
DEFINE_CONSTANT(input_dtypes_key, "input_dtypes")
DEFINE_CONSTANT(output_sizes_key, "output_sizes")
DEFINE_CONSTANT(output_dtypes_key, "output_dtypes")
DEFINE_CONSTANT(time_created_key, "time_created_ns")
DEFINE_CONSTANT(duration_key, "duration_ms")
DEFINE_CONSTANT(timeout_key, "timeout_ms")
DEFINE_CONSTANT(frames_key, "frames")
DEFINE_CONSTANT(state_key, "state")
DEFINE_CONSTANT(line_key, "line")
DEFINE_CONSTANT(name_key, "name")
DEFINE_CONSTANT(filename_key, "filename")
DEFINE_CONSTANT(retired_key, "retired")
DEFINE_CONSTANT(time_discovered_started_key, "time_discovered_started_ns")
DEFINE_CONSTANT(time_discovered_completed_key, "time_discovered_completed_ns")
DEFINE_CONSTANT(completed_state, "completed")
DEFINE_CONSTANT(scheduled_state, "scheduled")
DEFINE_CONSTANT(started_state, "started")
#undef DEFINE_CONSTANT
TORCH_API size_t hashTensors(const std::vector<at::Tensor>& tensors);
TORCH_API std::string getNcclVersion();
@ -244,35 +204,6 @@ TORCH_API std::string getNcclErrorDetailStr(
ncclResult_t error,
std::optional<std::string> processGroupFailureReason = std::nullopt);
// Write NCCL debug info to local disk or any storage users define.
// There are some constrains we set for the debug info writer:
// 1. The writer should only be registered once.
// 2. Once registered, users cannot change it including un-register.
// 3. It is recommended to register the customized writer in the trainer setup,
// If users don't register before calling launchAsyncDebugDump, then users
// lose the chance to register (and the default writer will be
// auto-registered).
class TORCH_API DebugInfoWriter {
public:
virtual ~DebugInfoWriter() = default;
virtual void write(const std::string& ncclTrace);
static DebugInfoWriter& getWriter(int rank);
static void registerWriter(std::unique_ptr<DebugInfoWriter> writer);
virtual std::string getWriterTarget() {
return filename_;
}
protected:
DebugInfoWriter(const std::string& namePrefix, int rank) {
filename_ = c10::str(namePrefix, rank);
}
std::string filename_;
private:
static std::unique_ptr<DebugInfoWriter> writer_;
static std::atomic<bool> hasWriterRegistered_;
};
// RAII wrapper for NCCL communicator
class NCCLComm {
using MutexType = std::recursive_mutex;
@ -599,167 +530,6 @@ struct ncclRedOpRAII {
bool premul_sum_ = false;
};
/* Helper used by work::getDuration() and nccl flight recorder */
float getDurationFromEvent(
at::cuda::CUDAEvent& ncclStartEvent,
at::cuda::CUDAEvent& ncclEndEvent);
struct NCCLTraceBuffer {
static NCCLTraceBuffer* get() {
// intentionally leak on exit
// because this will hold python state that may get destructed
static NCCLTraceBuffer* instance = new NCCLTraceBuffer();
return instance;
}
NCCLTraceBuffer() {
max_entries_ = getCvarInt({"TORCH_NCCL_TRACE_BUFFER_SIZE"}, 0);
capture_cpp_stack_ = getCvarBool({"TORCH_NCCL_TRACE_CPP_STACK"}, false);
enabled_ = max_entries_ > 0;
}
using Event = at::cuda::CUDAEvent;
struct Entry {
size_t id_; // incremented id in the trace buffer
// used to figure out where in the circular entries
// buffer this entry will be located to
// update state information
size_t pg_id_;
std::tuple<std::string, std::string> pg_name_; // <group_name, group_desc>
// collective_seq_id and p2p_seq_id refer to actual kernel launches (e.g. 1
// per coalesced group).
// collective_seq_id only increments for true collective operations (over
// all ranks in the group). p2p_seq_id only increments over non-collective
// operations in the group. op_id refers to logical operations (e.g. one per
// op inside coalesced group)
size_t collective_seq_id_;
size_t p2p_seq_id_;
size_t op_id_;
std::string profiling_name_;
std::shared_ptr<torch::CapturedTraceback> traceback_;
// we borrow pointers to start_ and end_ so we can query the state
// on reporting. However, once the event is completed, the call
// to `complete` will clear these.
Event *start_, *end_;
// timestamp when the entry was created, likely close to the time the work
// was 'enqueued'- not necessarily started
c10::time_t time_created_;
// configured timeout for this entry
c10::time_t timeout_ms_;
// Is this a P2P event?
bool isP2P_;
std::optional<float> duration_;
// timestamp when our CPU threads discovered that the kernel started.
// will always be _after_ it actually started, and can be very late
// if the watchdog thread got stuck on CUDA APIs.
std::optional<c10::time_t> time_discovered_started_;
// timestamp when our CPU threads discovered that the kernel completed.
// will always be _after_ it actually complated, and can be the same time
// as the discovery of the start if the watchdog thread is stuck on CUDA
// APIs
std::optional<c10::time_t> time_discovered_completed_;
// size information for input/output tensors
c10::SmallVector<int64_t, 4> input_dims_;
std::vector<c10::ScalarType> input_dtypes_;
c10::SmallVector<int64_t, 4> output_dims_;
std::vector<c10::ScalarType> output_dtypes_;
c10::SmallVector<int64_t, 8> sizes_; // flattened from inputs, outputs
bool retired_ = false; // is this work entry no longer in the workMetaList_?
// a retired but not completed event has timed out
// Returns the traceback of current entry, in string form.
std::string getTraceback();
};
bool enabled_ = false;
bool capture_cpp_stack_ = false;
std::mutex mutex_;
std::vector<Entry> entries_;
size_t max_entries_ = 0;
size_t next_ = 0;
size_t id_ = 0;
std::map<size_t, std::shared_ptr<ProcessGroupStatus>> all_pg_status_ = {};
std::map<std::tuple<std::string, std::string>, std::vector<uint64_t>>
pg_name_to_ranks_ = {};
std::optional<size_t> record(
size_t pg_id,
const std::tuple<std::string, std::string>& pg_name,
size_t collective_seq_id,
size_t p2p_seq_id,
size_t op_id,
std::string profiling_name,
const std::vector<at::Tensor>& inputs,
const std::vector<at::Tensor>& outputs,
Event* start,
Event* end,
std::chrono::milliseconds timeout_ms,
std::shared_ptr<ProcessGroupStatus> pg_status,
bool isP2P);
void record_pg_ranks(
const std::tuple<std::string, std::string>& pg_name,
std::vector<uint64_t> ranks);
void update_state(Entry& r);
std::vector<Entry> dump_entries();
// Returns the entry with the given id, if it exists. Otherwise, returns
// std::nullopt.
std::optional<Entry> getEntry(std::optional<size_t> id);
/*
Mark an Event as completed and free its events.
This is called by the watchdog thread, and is asynchronous from the
perspective of the main thread.
compute_duration defaults to true since retire_id is only called in the
watchdog thread, which is currently a place we call cuda APIs which may hang,
but care should be taken to avoid computing duration in any function that must
never hang. (timing must also be enabled for compute_duration - see
TORCH_NCCL_ENABLE_TIMING).
*/
void retire_id(std::optional<size_t> id, bool compute_duration = true);
const c10::List<c10::IValue> getCollectiveTrace(
bool includeStacktraces,
bool onlyActive);
// dump pg_entries
const c10::Dict<c10::IValue, c10::IValue> getPgConfig();
const std::map<std::string, std::map<std::string, std::string>>
getPgConfigJson();
// dump pg_status
const c10::Dict<c10::IValue, c10::IValue> getPgStatus();
const std::map<std::string, std::map<std::string, std::string>>
getPgStatusJson();
std::string dump_json(
const std::optional<std::unordered_map<
std::string,
std::unordered_map<std::string, std::string>>>& ncclDumpMap,
bool includeCollectives,
bool onlyActive);
// dump all collectives + ncclDumpMap
std::string dump(
const std::optional<std::unordered_map<
std::string,
std::unordered_map<std::string, std::string>>>& ncclDumpMap,
bool includeCollectives,
bool includeStackTraces,
bool onlyActive);
};
} // namespace c10d
#endif // USE_C10D_NCCL