Disable pytorch_short_perf_test_gpu CI job (#27797)

Summary:
The `pytorch_short_perf_test_gpu` CI job hasn't been giving useful signal compared to https://apaszke.github.io/pytorch-perf-hud/ or the FAI-PEP effort. This PR disables it to reduce maintenance workload for CI admins.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27797

Differential Revision: D17897180

Pulled By: yf225

fbshipit-source-id: 91a66ebac3d15a44094a669da38c43e3ea9c20d2
This commit is contained in:
Will Feng
2019-10-12 16:17:51 -07:00
committed by Facebook Github Bot
parent f6bda1e07b
commit aa73701f03
3 changed files with 1 additions and 74 deletions

View File

@ -160,7 +160,7 @@ def gen_dependent_configs(xenial_parent_config):
configs.append(c)
for x in ["pytorch_short_perf_test_gpu", "pytorch_python_doc_push", "pytorch_cpp_doc_push"]:
for x in ["pytorch_python_doc_push", "pytorch_cpp_doc_push"]:
configs.append(HiddenConf(x, parent_build=xenial_parent_config))
return configs

View File

@ -904,41 +904,6 @@ jobs:
root: .
paths: .circleci/scripts
pytorch_short_perf_test_gpu:
environment:
BUILD_ENVIRONMENT: pytorch-short-perf-test-gpu
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda9-cudnn7-py3:347"
PYTHON_VERSION: "3.6"
USE_CUDA_DOCKER_RUNTIME: "1"
resource_class: gpu.medium
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- setup_linux_system_environment
- setup_ci_environment
- run:
name: Perf Test
no_output_timeout: "1h"
command: |
set -e
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-${CIRCLE_SHA1}
echo "DOCKER_IMAGE: "${COMMIT_DOCKER_IMAGE}
time docker pull ${COMMIT_DOCKER_IMAGE} >/dev/null
export id=$(docker run --runtime=nvidia -t -d -w /var/lib/jenkins ${COMMIT_DOCKER_IMAGE})
docker cp $id:/var/lib/jenkins/workspace/env /home/circleci/project/env
# This IAM user allows write access to S3 bucket for perf test numbers
set +x
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_PERF_TEST_S3_BUCKET_V4}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_PERF_TEST_S3_BUCKET_V4}" >> /home/circleci/project/env
set -x
docker cp /home/circleci/project/env $id:/var/lib/jenkins/workspace/env
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && .jenkins/pytorch/short-perf-test-gpu.sh") | docker exec -u jenkins -i "$id" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
pytorch_python_doc_push:
environment:
BUILD_ENVIRONMENT: pytorch-python-doc-push
@ -1804,9 +1769,6 @@ workflows:
build_environment: "pytorch-linux-xenial-cuda9-cudnn7-py3-nogpu-test"
docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda9-cudnn7-py3:347"
resource_class: large
- pytorch_short_perf_test_gpu:
requires:
- pytorch_linux_xenial_cuda9_cudnn7_py3_build
- pytorch_python_doc_push:
requires:
- pytorch_linux_xenial_cuda9_cudnn7_py3_build

View File

@ -1,38 +1,3 @@
pytorch_short_perf_test_gpu:
environment:
BUILD_ENVIRONMENT: pytorch-short-perf-test-gpu
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda9-cudnn7-py3:347"
PYTHON_VERSION: "3.6"
USE_CUDA_DOCKER_RUNTIME: "1"
resource_class: gpu.medium
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- setup_linux_system_environment
- setup_ci_environment
- run:
name: Perf Test
no_output_timeout: "1h"
command: |
set -e
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-${CIRCLE_SHA1}
echo "DOCKER_IMAGE: "${COMMIT_DOCKER_IMAGE}
time docker pull ${COMMIT_DOCKER_IMAGE} >/dev/null
export id=$(docker run --runtime=nvidia -t -d -w /var/lib/jenkins ${COMMIT_DOCKER_IMAGE})
docker cp $id:/var/lib/jenkins/workspace/env /home/circleci/project/env
# This IAM user allows write access to S3 bucket for perf test numbers
set +x
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_PERF_TEST_S3_BUCKET_V4}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_PERF_TEST_S3_BUCKET_V4}" >> /home/circleci/project/env
set -x
docker cp /home/circleci/project/env $id:/var/lib/jenkins/workspace/env
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && .jenkins/pytorch/short-perf-test-gpu.sh") | docker exec -u jenkins -i "$id" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
pytorch_python_doc_push:
environment:
BUILD_ENVIRONMENT: pytorch-python-doc-push