Move schema inference to torch._library (#124199)

After this PR, we can delete torch._custom_op/torch._custom_ops (except
there are external libraries depending it).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124199
Approved by: https://github.com/albanD
ghstack dependencies: #124180, #124200, #124299, #124134
This commit is contained in:
rzou
2024-04-19 06:31:55 -07:00
committed by PyTorch MergeBot
parent a78450a00b
commit a8e17b2d4d
3 changed files with 161 additions and 142 deletions

View File

@ -0,0 +1,156 @@
import inspect
import typing
from .. import device, dtype, Tensor, types
def infer_schema(prototype_function: typing.Callable, mutates_args=()) -> str:
"""Given a function with type hints, parses a schema.
We make some assumptions to make our lives easier that correspond to how people
write custom ops in real life:
- none of the outputs alias any of the inputs or each other.
- only the args listed in mutates_args are being mutated.
Callers (e.g. the custom ops API) are responsible for checking these assumptions.
"""
sig = inspect.signature(prototype_function)
def error_fn(what):
raise ValueError(
f"infer_schema(func): {what} " f"Got func with signature {sig})"
)
params = []
seen_args = set()
for idx, (name, param) in enumerate(sig.parameters.items()):
if not supported_param(param):
error_fn("We do not support positional-only args, varargs, or varkwargs.")
if param.annotation is inspect.Parameter.empty:
error_fn(f"Parameter {name} must have a type annotation.")
if param.annotation not in SUPPORTED_PARAM_TYPES.keys():
error_fn(
f"Parameter {name} has unsupported type {param.annotation}. "
f"The valid types are: {SUPPORTED_PARAM_TYPES.keys()}."
)
schema_type = SUPPORTED_PARAM_TYPES[param.annotation]
if name in mutates_args:
if not schema_type.startswith("Tensor"):
error_fn(
f"Parameter {name} is in mutable_args but only Tensors or collections of Tensors can be mutated"
)
schema_type = f"Tensor(a{idx}!){schema_type[len('Tensor'):]}"
seen_args.add(name)
if param.default is inspect.Parameter.empty:
params.append(f"{schema_type} {name}")
else:
if param.default is not None and not isinstance(
param.default, (int, float, bool)
):
error_fn(
f"Parameter {name} has an unsupported default value (we only support "
f"int, float, bool, None). Please file an issue on GitHub so we can "
f"prioritize this."
)
params.append(f"{schema_type} {name}={param.default}")
mutates_args_not_seen = set(mutates_args) - seen_args
if len(mutates_args_not_seen) > 0:
error_fn(
f"{mutates_args_not_seen} in mutates_args were not found in "
f"the custom op's signature. "
f"mutates_args should contain the names of all args that the "
f"custom op mutates."
)
ret = parse_return(sig.return_annotation, error_fn)
return f"({', '.join(params)}) -> {ret}"
def derived_types(
base_type, cpp_type, list_base, optional_base_list, optional_list_base
):
result = [
(base_type, cpp_type),
(typing.Optional[base_type], f"{cpp_type}?"),
]
def derived_seq_types(typ):
return [
typing.Sequence[typ], # type: ignore[valid-type]
typing.List[typ], # type: ignore[valid-type]
]
if list_base:
for seq_typ in derived_seq_types(base_type):
result.append((seq_typ, f"{cpp_type}[]")) # type: ignore[valid-type]
if optional_base_list:
for seq_typ in derived_seq_types(typing.Optional[base_type]):
result.append((seq_typ, f"{cpp_type}?[]")) # type: ignore[valid-type]
if optional_list_base:
for seq_typ in derived_seq_types(base_type): # type: ignore[valid-type]
result.append((typing.Optional[seq_typ], f"{cpp_type}[]?")) # type: ignore[valid-type]
return result
def get_supported_param_types():
data = [
# (python type, schema type, type[] variant, type?[] variant, type[]? variant
(Tensor, "Tensor", True, True, False),
(int, "SymInt", True, False, True),
(float, "float", True, False, True),
(bool, "bool", True, False, True),
(str, "str", False, False, False),
(types.Number, "Scalar", True, False, False),
(dtype, "ScalarType", False, False, False),
(device, "Device", False, False, False),
]
result = []
for line in data:
result.extend(derived_types(*line))
return dict(result)
SUPPORTED_RETURN_TYPES = {
Tensor: "Tensor",
typing.List[Tensor]: "Tensor[]",
int: "SymInt",
float: "float",
bool: "bool",
types.Number: "Scalar",
}
def parse_return(annotation, error_fn):
if annotation is None:
return "()"
origin = typing.get_origin(annotation)
if origin is not tuple:
if annotation not in SUPPORTED_RETURN_TYPES.keys():
error_fn(
f"Return has unsupported type {annotation}. "
f"The valid types are: {SUPPORTED_RETURN_TYPES}."
)
return SUPPORTED_RETURN_TYPES[annotation]
args = typing.get_args(annotation)
for arg in args:
if arg not in SUPPORTED_RETURN_TYPES:
error_fn(
f"Return has unsupported type {annotation}. "
f"The valid types are: {SUPPORTED_RETURN_TYPES}."
)
return "(" + ", ".join([SUPPORTED_RETURN_TYPES[arg] for arg in args]) + ")"
SUPPORTED_PARAM_TYPES = get_supported_param_types()
def supported_param(param: inspect.Parameter) -> bool:
return param.kind in (
inspect.Parameter.POSITIONAL_OR_KEYWORD,
inspect.Parameter.KEYWORD_ONLY,
)