mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Remove all uses of AT_CHECK and replace them with TORCH_CHECK (#34846)
Summary: AT_CHECK has been deprecated and provides no more features than TORCH_CHECK Pull Request resolved: https://github.com/pytorch/pytorch/pull/34846 Differential Revision: D20481339 Pulled By: mrshenli fbshipit-source-id: 1777e769a069a78e03118270294e5e273d516ca7
This commit is contained in:
committed by
Facebook GitHub Bot
parent
76d9e76b4a
commit
a8ca340ad6
@ -447,7 +447,7 @@ std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor> miopen_rnn(
|
||||
fn.tensors.set(input.sizes(), fn_batch_sizes, batch_first);
|
||||
|
||||
if (fn.rnn.rnn_mode != miopenLSTM) {
|
||||
AT_CHECK(!cx.defined(), "miopen_rnn: illegal defined cx for non-LSTM RNN.");
|
||||
TORCH_CHECK(!cx.defined(), "miopen_rnn: illegal defined cx for non-LSTM RNN.");
|
||||
}
|
||||
|
||||
auto is_input_packed = fn.tensors.batch_sizes.size() != 0;
|
||||
@ -458,8 +458,8 @@ std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor> miopen_rnn(
|
||||
auto hidden_size = _hidden_size(fn.rnn, fn.tensors);
|
||||
auto output_size = _output_size(fn.rnn, fn.tensors);
|
||||
|
||||
AT_CHECK(hx.is_contiguous(), "miopen_rnn : hx is not contiguous.");
|
||||
AT_CHECK(!cx.defined() || cx.is_contiguous(), "miopen_rnn : cx is not contiguous.");
|
||||
TORCH_CHECK(hx.is_contiguous(), "miopen_rnn : hx is not contiguous.");
|
||||
TORCH_CHECK(!cx.defined() || cx.is_contiguous(), "miopen_rnn : cx is not contiguous.");
|
||||
|
||||
auto x = input.contiguous();
|
||||
auto output = at::empty(output_size, input.options());
|
||||
@ -493,7 +493,7 @@ std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor> miopen_rnn(
|
||||
_copyParams_and_permute(MatrixRef<Tensor>{weight, static_cast<size_t>(weight_stride0)},
|
||||
MatrixRef<Tensor>{params, params_stride0}, fn_mode);
|
||||
|
||||
AT_CHECK(!cx.defined() || cx.sizes().equals(hidden_size), "Expected cell size ", IntArrayRef{hidden_size}, ", got", cx.sizes());
|
||||
TORCH_CHECK(!cx.defined() || cx.sizes().equals(hidden_size), "Expected cell size ", IntArrayRef{hidden_size}, ", got", cx.sizes());
|
||||
|
||||
size_t workspace_size;
|
||||
auto x_descs_arr = descs.get_x_descs();
|
||||
@ -563,7 +563,7 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> miopen_rnn_backward_input(
|
||||
auto handle = getMiopenHandle();
|
||||
|
||||
if(fn.rnn.rnn_mode != miopenLSTM) {
|
||||
AT_CHECK(!cx.defined(), "rnn: illegal defined cx for non-LSTM RNN");
|
||||
TORCH_CHECK(!cx.defined(), "rnn: illegal defined cx for non-LSTM RNN");
|
||||
}
|
||||
|
||||
auto is_input_packed = fn_batch_sizes.size() != 0;
|
||||
@ -577,8 +577,8 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> miopen_rnn_backward_input(
|
||||
auto hidden_size = _hidden_size(fn.rnn, fn.tensors);
|
||||
auto output_size = _output_size(fn.rnn, fn.tensors);
|
||||
|
||||
AT_CHECK(hx.is_contiguous(), "rnn: hx is not contiguous");
|
||||
AT_CHECK(!cx.defined() || cx.is_contiguous(), "rnn: cx is not contiguous");
|
||||
TORCH_CHECK(hx.is_contiguous(), "rnn: hx is not contiguous");
|
||||
TORCH_CHECK(!cx.defined() || cx.is_contiguous(), "rnn: cx is not contiguous");
|
||||
|
||||
auto x = input.contiguous();
|
||||
auto dy = grad_output.contiguous();
|
||||
@ -591,23 +591,23 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> miopen_rnn_backward_input(
|
||||
AT_ASSERTM(cx.defined() || !output_mask[2], "illegally required grad of cx for non-LSTM RNN");
|
||||
auto dcx = cx.defined() ? at::empty(hidden_size, cx.options()) : Tensor();
|
||||
|
||||
AT_CHECK(fn_train, "miopen RNN backward can only be called in training mode");
|
||||
TORCH_CHECK(fn_train, "miopen RNN backward can only be called in training mode");
|
||||
|
||||
AT_CHECK(input.sizes().equals(input_size),
|
||||
TORCH_CHECK(input.sizes().equals(input_size),
|
||||
"Expected input size ", IntArrayRef{input_size}, ", got ", input.sizes());
|
||||
AT_CHECK(output.sizes().equals(output_size),
|
||||
TORCH_CHECK(output.sizes().equals(output_size),
|
||||
"Expected output size ", IntArrayRef{output_size}, ", got ", output.sizes());
|
||||
|
||||
AT_CHECK(!hx.defined() || hx.sizes().equals(hidden_size),
|
||||
TORCH_CHECK(!hx.defined() || hx.sizes().equals(hidden_size),
|
||||
"Expected hidden size ", IntArrayRef{hidden_size}, ", got ", hx.sizes());
|
||||
AT_CHECK(!cx.defined() || cx.sizes().equals(hidden_size),
|
||||
TORCH_CHECK(!cx.defined() || cx.sizes().equals(hidden_size),
|
||||
"Expected cell size ", IntArrayRef{hidden_size}, ", got ", cx.sizes());
|
||||
AT_CHECK(!dhy.defined() || dhy.sizes().equals(hidden_size),
|
||||
TORCH_CHECK(!dhy.defined() || dhy.sizes().equals(hidden_size),
|
||||
"Expected d_hidden size ", IntArrayRef{hidden_size}, ", got ", dhy.sizes());
|
||||
AT_CHECK(!dcy.defined() || dcy.sizes().equals(hidden_size),
|
||||
TORCH_CHECK(!dcy.defined() || dcy.sizes().equals(hidden_size),
|
||||
"Expected d_cell size ", IntArrayRef{hidden_size}, ", got ", dcy.sizes());
|
||||
|
||||
AT_CHECK(dhy.is_cuda() && dy.is_cuda() && (!dcy.defined() || dcy.is_cuda()),
|
||||
TORCH_CHECK(dhy.is_cuda() && dy.is_cuda() && (!dcy.defined() || dcy.is_cuda()),
|
||||
"Gradients aren't HIP tensors");
|
||||
|
||||
miopenRNNAlgo_t algo = miopenRNNdefault;
|
||||
@ -679,7 +679,7 @@ std::vector<Tensor> miopen_rnn_backward_weight(
|
||||
auto handle = getMiopenHandle();
|
||||
|
||||
if (fn.rnn.rnn_mode != miopenLSTM) {
|
||||
AT_CHECK(!cx.defined(), "rnn: illegal defined cx for non-LSTM RNN");
|
||||
TORCH_CHECK(!cx.defined(), "rnn: illegal defined cx for non-LSTM RNN");
|
||||
}
|
||||
|
||||
auto is_input_packed = fn_batch_sizes.size() != 0;
|
||||
@ -691,15 +691,15 @@ std::vector<Tensor> miopen_rnn_backward_weight(
|
||||
auto input_size = _input_size(fn.tensors);
|
||||
auto hidden_size = _hidden_size(fn.rnn, fn.tensors);
|
||||
|
||||
AT_CHECK(fn_train, "miopen RNN backward can only be called in training mode");
|
||||
TORCH_CHECK(fn_train, "miopen RNN backward can only be called in training mode");
|
||||
|
||||
AT_CHECK(input.sizes().equals(input_size),
|
||||
TORCH_CHECK(input.sizes().equals(input_size),
|
||||
"Expected input size ", IntArrayRef{input_size}, ", got ", input.sizes());
|
||||
AT_CHECK(!hx.defined() || hx.sizes().equals(hidden_size),
|
||||
TORCH_CHECK(!hx.defined() || hx.sizes().equals(hidden_size),
|
||||
"Expected hidden size ", IntArrayRef{hidden_size}, ", got ", hx.sizes());
|
||||
|
||||
AT_CHECK(hx.is_contiguous(), "rnn: hx is not contiguous");
|
||||
AT_CHECK(!cx.defined() || cx.is_contiguous(), "rnn: cx is not contiguous");
|
||||
TORCH_CHECK(hx.is_contiguous(), "rnn: hx is not contiguous");
|
||||
TORCH_CHECK(!cx.defined() || cx.is_contiguous(), "rnn: cx is not contiguous");
|
||||
|
||||
auto x = input.contiguous();
|
||||
const auto& y = output;
|
||||
@ -808,7 +808,7 @@ std::pair<Tensor, hidden_type> _miopen_impl(
|
||||
std::tie(hx, cx) = unpack_hidden(hidden);
|
||||
int64_t hidden_size = hx.size(2);
|
||||
|
||||
AT_CHECK(_batch_sizes.dim() == 1, "batch_sizes tensor should be 1D");
|
||||
TORCH_CHECK(_batch_sizes.dim() == 1, "batch_sizes tensor should be 1D");
|
||||
IntArrayRef batch_sizes { _batch_sizes.data_ptr<int64_t>(), static_cast<size_t>(_batch_sizes.size(0)) };
|
||||
|
||||
Tensor dropout_state = at::empty({0}, input.options());
|
||||
|
@ -369,9 +369,6 @@ C10_DEPRECATED_MESSAGE("AT_INDEX_ERROR(msg) is deprecated, use TORCH_CHECK_INDEX
|
||||
*/
|
||||
inline void deprecated_AT_INDEX_ERROR() {}
|
||||
|
||||
C10_DEPRECATED_MESSAGE("AT_CHECK is deprecated, use TORCH_CHECK instead.")
|
||||
inline void deprecated_AT_CHECK() {}
|
||||
|
||||
/*
|
||||
// Deprecation disabled until we fix sites in our codebase
|
||||
C10_DEPRECATED_MESSAGE("AT_ASSERT is deprecated, if you mean to indicate an internal invariant failure, use " \
|
||||
@ -390,15 +387,6 @@ inline void deprecated_AT_ASSERTM() {}
|
||||
|
||||
}} // namespace c10::detail
|
||||
|
||||
// Deprecated alias; this alias was deprecated because it wasn't clear to
|
||||
// people that you should use a macro with AT_ prefix inside the torch/csrc
|
||||
// directory. Use TORCH_CHECK instead.
|
||||
#define AT_CHECK(...) \
|
||||
do { \
|
||||
::c10::detail::deprecated_AT_CHECK(); \
|
||||
C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(__VA_ARGS__)); \
|
||||
} while (false)
|
||||
|
||||
// Deprecated alias; this alias was deprecated because people kept mistakenly
|
||||
// using it for user error checking. Use TORCH_INTERNAL_ASSERT or TORCH_CHECK
|
||||
// instead. See https://github.com/pytorch/pytorch/issues/20287 for more details.
|
||||
|
@ -173,7 +173,7 @@ ScalarType infer_scalar_type(PyObject *obj) {
|
||||
switch (torch::tensors::get_default_scalar_type()) {
|
||||
case ScalarType::Float: return ScalarType::ComplexFloat;
|
||||
case ScalarType::Double: return ScalarType::ComplexDouble;
|
||||
default: AT_CHECK(0, "invalid default scalar type for complex");
|
||||
default: TORCH_CHECK(false, "invalid default scalar type for complex");
|
||||
}
|
||||
}
|
||||
if (THPVariable_Check(obj)) {
|
||||
|
@ -954,7 +954,7 @@ class AsyncSparseAllreduceWork : public ProcessGroupGloo::AsyncWork {
|
||||
continue;
|
||||
}
|
||||
const auto actual = metadata[i].sizes();
|
||||
AT_CHECK(actual == expected, "Sparse dimensions do not match");
|
||||
TORCH_CHECK(actual == expected, "Sparse dimensions do not match");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -450,7 +450,7 @@ void ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId* ncclID) {
|
||||
store_->set(storeKey, vec);
|
||||
} else {
|
||||
auto vec = store_->get(storeKey);
|
||||
AT_CHECK(vec.size() == NCCL_UNIQUE_ID_BYTES);
|
||||
TORCH_CHECK(vec.size() == NCCL_UNIQUE_ID_BYTES);
|
||||
std::memcpy(ncclID, vec.data(), vec.size());
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user