mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Fix all occurrences of C416. (#33429)
Summary: C416: Unnecessary (list/set) comprehension - rewrite using list/set(). See https://pypi.org/project/flake8-comprehensions/ Pull Request resolved: https://github.com/pytorch/pytorch/pull/33429 Differential Revision: D19972858 Pulled By: ezyang fbshipit-source-id: faac042a94c59d737bd5ae983121a0a029346e23
This commit is contained in:
committed by
Facebook Github Bot
parent
4588f49f68
commit
a6a72ac68f
@ -23,7 +23,7 @@ def load_tags_for_projects(workflow_config):
|
||||
|
||||
|
||||
def check_version(job, tags, expected_version):
|
||||
valid_versions = [v for v in tags[job].split(",")]
|
||||
valid_versions = tags[job].split(",")
|
||||
if expected_version not in valid_versions:
|
||||
raise RuntimeError(
|
||||
"We configured {} to use Docker version {}; but this "
|
||||
|
2
.flake8
2
.flake8
@ -8,6 +8,6 @@ ignore =
|
||||
# these ignores are from flake8-bugbear; please fix!
|
||||
B007,B008,
|
||||
# these ignores are from flake8-comprehensions; please fix!
|
||||
C400,C401,C402,C403,C404,C405,C407,C411,C413,C414,C415,C416
|
||||
C400,C401,C402,C403,C404,C405,C407,C411,C413,C414,C415
|
||||
per-file-ignores = __init__.py: F401
|
||||
exclude = docs/src,venv,third_party,caffe2,scripts,docs/caffe2,torch/lib/include,torch/lib/tmp_install,build,torch/include,*.pyi,.git
|
||||
|
@ -91,7 +91,7 @@ def process_types_and_backends(option):
|
||||
|
||||
# sort the result for easy reading
|
||||
for backend in backend_types.keys():
|
||||
backend_types[backend] = sorted([type for type in backend_types[backend]])
|
||||
backend_types[backend] = sorted(backend_types[backend])
|
||||
option['backend_types'] = backend_types
|
||||
|
||||
|
||||
|
@ -289,13 +289,13 @@ class _DistTestBase(object):
|
||||
return (group, group_id, rank)
|
||||
|
||||
def _init_full_group_test(self, **kwargs):
|
||||
group = [i for i in range(0, dist.get_world_size())]
|
||||
group = list(range(0, dist.get_world_size()))
|
||||
group_id = dist.new_group(**kwargs)
|
||||
rank = dist.get_rank()
|
||||
return (group, group_id, rank)
|
||||
|
||||
def _init_global_test(self):
|
||||
group = [i for i in range(0, dist.get_world_size())]
|
||||
group = list(range(0, dist.get_world_size()))
|
||||
group_id = dist.group.WORLD
|
||||
rank = dist.get_rank()
|
||||
return (group, group_id, rank)
|
||||
|
@ -459,7 +459,7 @@ class TestList(JitTestCase):
|
||||
|
||||
def fn(x):
|
||||
# type: (int)
|
||||
return [i for i in range(x)]
|
||||
return [i for i in range(x)] # noqa: C416
|
||||
|
||||
test_func(fn, (9,))
|
||||
test_func(fn, (0,))
|
||||
|
@ -976,7 +976,7 @@ class TestDataLoader(TestCase):
|
||||
dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=None,
|
||||
worker_init_fn=set_faulthander_if_available)
|
||||
dataloader_iter = iter(dataloader)
|
||||
fetched = sorted([d for d in dataloader_iter])
|
||||
fetched = sorted(dataloader_iter)
|
||||
for a, b in zip(fetched, expected):
|
||||
# non-batched should not convert ints into tensors
|
||||
self.assertIsInstance(a, torch._six.int_classes)
|
||||
@ -1808,7 +1808,7 @@ class TestWorkerQueueDataset(Dataset):
|
||||
class TestIndividualWorkerQueue(TestCase):
|
||||
def setUp(self):
|
||||
super(TestIndividualWorkerQueue, self).setUp()
|
||||
self.dataset = TestWorkerQueueDataset([i for i in range(128)])
|
||||
self.dataset = TestWorkerQueueDataset(list(range(128)))
|
||||
|
||||
def _run_ind_worker_queue_test(self, batch_size, num_workers):
|
||||
loader = DataLoader(
|
||||
@ -1818,7 +1818,7 @@ class TestIndividualWorkerQueue(TestCase):
|
||||
current_worker_idx = 0
|
||||
for i, (worker_ids, sample) in enumerate(loader):
|
||||
self.assertEqual(worker_ids.tolist(), [current_worker_idx] * batch_size)
|
||||
self.assertEqual(sample.tolist(), [j for j in range(i * batch_size, (i + 1) * batch_size)])
|
||||
self.assertEqual(sample.tolist(), list(range(i * batch_size, (i + 1) * batch_size)))
|
||||
current_worker_idx += 1
|
||||
if current_worker_idx == num_workers:
|
||||
current_worker_idx = 0
|
||||
|
@ -1973,7 +1973,7 @@ graph(%Ra, %Rb):
|
||||
|
||||
trace_graph, _ = torch.jit._get_trace_graph(fn, (x,), _force_outplace=True)
|
||||
self.run_pass('dce', trace_graph)
|
||||
ops = [n for n in trace_graph.nodes()]
|
||||
ops = list(trace_graph.nodes())
|
||||
for op in ops:
|
||||
self.assertTrue(op.hasAttribute('inplace'))
|
||||
inplace_flags = [False, True, True, False]
|
||||
@ -3889,23 +3889,23 @@ graph(%Ra, %Rb):
|
||||
slstm(*inputs).sum().backward()
|
||||
global fw_graph
|
||||
fw_graph = slstm.graph_for(*inputs)
|
||||
nodes = [n for n in fw_graph.nodes()]
|
||||
nodes = list(fw_graph.nodes())
|
||||
tested_blocks = False
|
||||
for node in nodes:
|
||||
for output in [o for o in node.outputs()]:
|
||||
for output in node.outputs():
|
||||
self.assertTrue(hasattr(output, 'type'))
|
||||
self.assertTrue(output.type() is not None)
|
||||
for input in [i for i in node.inputs()]:
|
||||
for input in node.inputs():
|
||||
self.assertTrue(hasattr(input, 'type'))
|
||||
self.assertTrue(input.type() is not None)
|
||||
for block in [b for b in node.blocks()]:
|
||||
for block in node.blocks():
|
||||
tested_blocks = True
|
||||
self.assertTrue(hasattr(block, 'inputs'))
|
||||
self.assertTrue(hasattr(block, 'outputs'))
|
||||
for output in [o for o in block.outputs()]:
|
||||
for output in block.outputs():
|
||||
self.assertTrue(hasattr(output, 'type'))
|
||||
self.assertTrue(output.type() is not None)
|
||||
for input in [i for i in block.inputs()]:
|
||||
for input in block.inputs():
|
||||
self.assertTrue(hasattr(input, 'type'))
|
||||
self.assertTrue(input.type() is not None)
|
||||
self.assertTrue(hasattr(block, 'returnNode'))
|
||||
@ -10013,7 +10013,7 @@ a")
|
||||
self.assertEqual(o, v)
|
||||
|
||||
with self.assertRaisesRegex(Exception, "object is not iterable"):
|
||||
print([val for val in m])
|
||||
print(list(m))
|
||||
|
||||
def test_attr_qscheme_script(self):
|
||||
class Foo(torch.nn.Module):
|
||||
@ -12757,7 +12757,7 @@ a")
|
||||
self.assertEqual(torch.jit.script(mod)(torch.tensor(.5)), [])
|
||||
|
||||
def bad_type_annotation():
|
||||
out = torch.jit.annotate(int, [x for x in [1, 2, 3]])
|
||||
out = torch.jit.annotate(int, [x for x in [1, 2, 3]]) # noqa: C416
|
||||
return out
|
||||
|
||||
with self.assertRaisesRegex(Exception, "Expected list type annotation"):
|
||||
|
@ -1884,14 +1884,14 @@ class TestSparse(TestCase):
|
||||
|
||||
@cpu_only # not really, but we only really want to run this once
|
||||
def test_dtypes(self):
|
||||
all_sparse_dtypes = [dtype for dtype in torch.testing.get_all_dtypes()]
|
||||
all_sparse_dtypes = torch.testing.get_all_dtypes()
|
||||
do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
|
||||
if torch.cuda.is_available():
|
||||
do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
|
||||
|
||||
@cpu_only # not really, but we only really want to run this once
|
||||
def test_empty_full(self):
|
||||
all_sparse_dtypes = [dtype for dtype in torch.testing.get_all_dtypes()]
|
||||
all_sparse_dtypes = torch.testing.get_all_dtypes()
|
||||
do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
|
||||
if torch.cuda.device_count() > 0:
|
||||
do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, None)
|
||||
|
@ -57,8 +57,8 @@ def get_numerical_jacobian(fn, input, target=None, eps=1e-3):
|
||||
# It's much easier to iterate over flattened lists of tensors.
|
||||
# These are reference to the same objects in jacobian, so any changes
|
||||
# will be reflected in it as well.
|
||||
x_tensors = [t for t in iter_tensors(target, True)]
|
||||
j_tensors = [t for t in iter_tensors(jacobian)]
|
||||
x_tensors = iter_tensors(target, True)
|
||||
j_tensors = iter_tensors(jacobian)
|
||||
|
||||
# TODO: compare structure
|
||||
for x_tensor, d_tensor in zip(x_tensors, j_tensors):
|
||||
|
@ -2182,7 +2182,7 @@ def group_norm(g, input, num_groups, weight, bias, eps, cudnn_enabled):
|
||||
bias = g.op("Constant", value_t=bias_value)
|
||||
|
||||
# Norm has shape [N, C, *] so we reshape weight and bias to [C, *]
|
||||
axes = [i for i in range(1, len(input_sizes) - 1)]
|
||||
axes = list(range(1, len(input_sizes) - 1))
|
||||
return add(g, mul(g, norm, g.op("Unsqueeze", weight, axes_i=axes)), g.op("Unsqueeze", bias, axes_i=axes))
|
||||
|
||||
|
||||
|
@ -312,7 +312,7 @@ class MultiplicativeLR(_LRScheduler):
|
||||
return [group['lr'] * lmbda(self.last_epoch)
|
||||
for lmbda, group in zip(self.lr_lambdas, self.optimizer.param_groups)]
|
||||
else:
|
||||
return [base_lr for base_lr in self.base_lrs]
|
||||
return list(self.base_lrs)
|
||||
|
||||
|
||||
class StepLR(_LRScheduler):
|
||||
|
@ -47,7 +47,7 @@ class _StorageBase(object):
|
||||
|
||||
def tolist(self):
|
||||
"""Returns a list containing the elements of this storage"""
|
||||
return [v for v in self]
|
||||
return list(self)
|
||||
|
||||
def cpu(self):
|
||||
"""Returns a CPU copy of this storage if it's not already on the CPU"""
|
||||
|
@ -310,7 +310,7 @@ class RpcTest(RpcAgentTestFixture):
|
||||
self.assertEqual(worker_names, expected_worker_names)
|
||||
|
||||
worker_ids = {worker_info.id for worker_info in worker_infos}
|
||||
expected_worker_ids = {rank for rank in range(self.world_size)}
|
||||
expected_worker_ids = set(range(self.world_size))
|
||||
self.assertEqual(worker_ids, expected_worker_ids)
|
||||
|
||||
@dist_init
|
||||
|
@ -281,8 +281,8 @@ def processKernelLaunches(string, stats):
|
||||
|
||||
return kernel_positions
|
||||
|
||||
# Grab positional ranges of all kernel launchces
|
||||
get_kernel_positions = [k for k in find_kernel_bounds(string)]
|
||||
# Grab positional ranges of all kernel launches
|
||||
get_kernel_positions = list(find_kernel_bounds(string))
|
||||
output_string = string
|
||||
|
||||
# Replace each CUDA kernel with a HIP kernel.
|
||||
|
@ -446,7 +446,7 @@ def _operator_to_node_simp(op, inter_blobs, seen):
|
||||
if op.name:
|
||||
name = op.name
|
||||
else:
|
||||
name_list = [name for name in outputs]
|
||||
name_list = list(outputs)
|
||||
scope = os.path.commonprefix(name_list)
|
||||
name = os.path.join(scope, op.type)
|
||||
assert(name)
|
||||
|
Reference in New Issue
Block a user