[TensorExpr] Move AOT compilation logic from aot_compiler.cpp to NNC's to_backend (#70375)

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/70375

Differential Revision:
D33303645
D33303645

Test Plan: Imported from OSS

Reviewed By: VitalyFedyunin, priyaramani

Pulled By: ZolotukhinM

fbshipit-source-id: 01ab9fab9bb0d63f89b06a146d3c5fb6ed7fe52d
(cherry picked from commit aac8e0ed900d1b760606b0b50eb064e6b00f8b7a)
This commit is contained in:
Mikhail Zolotukhin
2022-02-01 18:25:44 -08:00
committed by PyTorch MergeBot
parent 64668e61b8
commit a60e2ae037
4 changed files with 200 additions and 316 deletions

View File

@ -7,14 +7,7 @@
#include <torch/csrc/jit/backends/backend_detail.h>
#include <torch/csrc/jit/backends/backend_preprocess.h>
#include <torch/csrc/jit/mobile/nnc/aot_compiler.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/frozen_graph_optimizations.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/symbolic_shape_analysis.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/tensorexpr/graph_opt.h>
@ -61,125 +54,20 @@ std::vector<std::string> split(
return pieces;
}
std::vector<std::vector<int64_t>> parseInputShapes() {
CAFFE_ENFORCE_GE(FLAGS_input_dims.size(), 0, "Input dims must be specified.");
std::vector<std::string> input_dims_list = split(';', FLAGS_input_dims);
std::vector<std::vector<int64_t>> inputs;
for (const auto& input_dims_item : input_dims_list) {
auto input_dims_str = split(',', input_dims_item);
std::vector<int64_t> input_dims;
input_dims.reserve(input_dims_str.size());
for (const auto& s : input_dims_str) {
input_dims.push_back(c10::stoi(s));
}
inputs.push_back(input_dims);
}
return inputs;
}
std::vector<at::ScalarType> parseInputTypes() {
std::vector<std::string> inputTypes = split(';', FLAGS_input_types);
std::vector<at::ScalarType> scalarTypes;
for (const auto& inputType : inputTypes) {
at::ScalarType scalarType;
if (inputType == "float") {
scalarType = at::ScalarType::Float;
} else if (inputType == "uint8") {
scalarType = at::ScalarType::Byte;
} else if (inputType == "int64") {
scalarType = at::ScalarType::Long;
} else {
CAFFE_THROW("Unsupported input type: ", inputType);
}
scalarTypes.push_back(scalarType);
}
return scalarTypes;
}
c10::Dict<c10::IValue, c10::IValue> createCompileSpec() {
c10::Dict<c10::IValue, c10::IValue> compile_spec(
c10::StringType::get(), c10::AnyType::get());
c10::Dict<c10::IValue, c10::IValue> method_spec(
c10::StringType::get(), c10::AnyType::get());
auto inputShapes = parseInputShapes();
auto inputTypes = parseInputTypes();
method_spec.insert("sizes", inputShapes);
method_spec.insert("types", inputTypes);
method_spec.insert("sizes", FLAGS_input_dims);
method_spec.insert("types", FLAGS_input_types);
method_spec.insert("asmfile", FLAGS_output_llvm);
method_spec.insert("model_name", FLAGS_model_name);
method_spec.insert("model_version", FLAGS_model_version);
compile_spec.insert(FLAGS_method_name, method_spec);
return compile_spec;
}
std::vector<std::vector<int64_t>> getInputSizes(
const c10::Dict<c10::IValue, c10::IValue>& compile_spec) {
auto input_shapes = compile_spec.at(FLAGS_method_name).toGenericDict().at("sizes").toList();
std::vector<std::vector<int64_t>> inputSizes;
for (const auto& input_shape : input_shapes) {
auto sizes = ((c10::IValue) input_shape).toIntVector();
inputSizes.emplace_back(sizes);
}
return inputSizes;
}
std::vector<at::ScalarType> getInputTypes(
const c10::Dict<c10::IValue, c10::IValue>& compile_spec) {
auto inputTypesList = compile_spec.at(FLAGS_method_name).toGenericDict().at("types").toList();
std::vector<at::ScalarType> inputTypes;
for (const auto& inputType : inputTypesList) {
auto type = ((c10::IValue) inputType).toScalarType();
inputTypes.emplace_back(type);
}
return inputTypes;
}
std::string getNncKernelId() {
// TODO: calculate the version_token.
const std::string version_token = "VERTOKEN";
return FLAGS_model_name + ":" + FLAGS_model_version + ":" + FLAGS_method_name +
":" + version_token;
}
std::string getNncKernelFuncName(const std::string& method_name) {
return "nnc_" + FLAGS_model_name + "_" + FLAGS_model_version + "_" + method_name;
}
void writeOutputLlvmAssembly(const std::string& asm_code) {
std::string output_llvm_file_name = FLAGS_output_llvm;
if (output_llvm_file_name.empty()) {
output_llvm_file_name =
FLAGS_model.substr(0, FLAGS_model.find('.')) + ".compiled.ll";
}
std::ofstream output(output_llvm_file_name);
output << asm_code;
std::cout << "The compiled llvm assembly code was saved to " << output_llvm_file_name
<< std::endl;
}
c10::IValue preprocess(
const torch::jit::Module& mod,
const c10::Dict<c10::IValue, c10::IValue>& compile_spec,
const torch::jit::BackendDebugHandleGenerator& generate_debug_handles) {
auto method = mod.get_method(FLAGS_method_name);
auto graph = toGraphFunction(method.function()).graph()->copy();
auto sizes = getInputSizes(compile_spec);
auto types = getInputTypes(compile_spec);
auto kernel_func_name = getNncKernelFuncName(FLAGS_method_name);
auto compiled = torch::jit::mobile::nnc::aotCompile(
FLAGS_method_name, graph, sizes, types, kernel_func_name);
writeOutputLlvmAssembly(compiled.second);
auto func = std::move(compiled.first);
func->set_nnc_kernel_id(getNncKernelId());
torch::jit::mobile::nnc::CompilationUnit cu;
cu.register_function(std::move(func));
return cu.serialize();
}
static auto reg = torch::jit::backend_preprocess_register("nnc", preprocess);
} // namespace
int main(int argc, char** argv) {
@ -205,7 +93,9 @@ int main(int argc, char** argv) {
CAFFE_ENFORCE(!FLAGS_model_name.empty(), c10::UsageMessage());
CAFFE_ENFORCE(!FLAGS_model_version.empty(), c10::UsageMessage());
CAFFE_ENFORCE(!FLAGS_input_dims.empty(), c10::UsageMessage());
CAFFE_ENFORCE(split(';', FLAGS_input_dims).size() == split(';', FLAGS_input_types).size(),
CAFFE_ENFORCE(
split(';', FLAGS_input_dims).size() ==
split(';', FLAGS_input_types).size(),
"Number of input_dims and input_types should be the same");
std::string output_model_name = FLAGS_output_model;
@ -217,27 +107,6 @@ int main(int argc, char** argv) {
auto m = torch::jit::load(FLAGS_model);
m.eval();
auto frozen_m = torch::jit::freeze_module(m.clone());
auto graph = frozen_m.get_method(FLAGS_method_name).graph();
auto inputShapes = parseInputShapes();
auto inputTypes = parseInputTypes();
std::vector<c10::optional<at::Tensor>> example_inputs;
example_inputs.reserve(inputShapes.size());
for (int i = 0; i < inputShapes.size(); ++i) {
example_inputs.emplace_back(at::rand(inputShapes[i]).to(at::dtype(inputTypes[i])));
}
torch::jit::RemoveTensorMutation(graph);
torch::jit::EliminateDeadCode(graph->block());
graph = torch::jit::tensorexpr::removeUnusedSelfArgument(graph);
torch::jit::tensorexpr::annotateInputShapes(graph, example_inputs);
torch::jit::OptimizeFrozenGraph(graph, true);
torch::jit::PropagateShapesOnGraph(graph);
torch::jit::PeepholeOptimize(graph, false);
torch::jit::ConstantPropagation(graph);
torch::jit::PropagateShapesOnGraph(graph);
torch::jit::PeepholeOptimize(graph, false);
torch::jit::ConstantPropagation(graph);
auto compile_spec = createCompileSpec();
auto any_dict_ty =

View File

@ -15,7 +15,7 @@ test_aot_model_compiler() {
python "$CURRENT_DIR"/aot_test_model.py
mv "$MODEL" "$TMP_DIR"/
pushd "$TMP_DIR"
"$TORCH_BIN_DIR"/aot_model_compiler_test --model "$MODEL" --model_name=aot_test_model --model_version=v1 --input_dims="2,2,2"
"$TORCH_BIN_DIR"/aot_model_compiler_test --model "$MODEL" --model_name=aot_test_model --output_llvm=$COMPILED_CODE --model_version=v1 --input_dims="2,2,2"
if [ ! -f "$COMPILED_MODEL" ] || [ ! -f "$COMPILED_CODE" ]; then
echo "AOT model compiler failed to generate $COMPILED_MODEL and $COMPILED_CODE"
exit 1

View File

@ -1,3 +1,4 @@
#include <ATen/Functions.h>
#include <gtest/gtest.h>
#include <torch/csrc/jit/backends/backend.h>
#include <torch/csrc/jit/backends/backend_detail.h>
@ -7,9 +8,9 @@
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/mobile/nnc/context.h>
#include <torch/csrc/jit/mobile/nnc/registry.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/custom_class.h>
#include <torch/script.h>
#include <ATen/Functions.h>
namespace torch {
namespace jit {
@ -20,20 +21,18 @@ namespace {
c10::Dict<c10::IValue, c10::IValue> create_compile_spec(
const std::string& method_name,
const std::string& nnc_kernel_id,
const std::vector<std::vector<int64_t>>& input_shapes,
const std::vector<std::vector<int64_t>>& output_shapes,
const c10::impl::GenericList& parameters,
const std::vector<int64_t>& buffer_sizes) {
const std::string& model_name,
const std::string& input_shapes,
const std::string& input_types) {
c10::Dict<c10::IValue, c10::IValue> method_spec(
c10::StringType::get(), c10::AnyType::get());
method_spec.insert("nnc_kernel_id", nnc_kernel_id);
method_spec.insert("input_sizes", input_shapes);
method_spec.insert("output_sizes", output_shapes);
// For testing purpose we don't call the real NNC so pass in these directly.
method_spec.insert("parameters", parameters);
method_spec.insert("buffer_sizes", buffer_sizes);
method_spec.insert("sizes", input_shapes);
method_spec.insert("types", input_types);
method_spec.insert("model_name", model_name);
method_spec.insert("model_version", "v1");
method_spec.insert("asmfile", "fake_nnc_model.s");
method_spec.insert("arch", "x86-64");
c10::Dict<c10::IValue, c10::IValue> compile_spec(
c10::StringType::get(), c10::AnyType::get());
@ -41,85 +40,6 @@ c10::Dict<c10::IValue, c10::IValue> create_compile_spec(
return compile_spec;
}
std::vector<mobile::nnc::InputSpec> get_input_specs(
const c10::Dict<c10::IValue, c10::IValue>& method_compile_spec) {
auto input_shapes = method_compile_spec.at("input_sizes").toList();
std::vector<mobile::nnc::InputSpec> specs;
for (const auto& input_shape : input_shapes) {
mobile::nnc::InputSpec spec;
spec.sizes_ = ((c10::IValue) input_shape).toIntVector();
spec.dtype_ = c10::ScalarType::Float;
specs.emplace_back(std::move(spec));
}
return specs;
}
std::vector<mobile::nnc::OutputSpec> get_output_specs(
const c10::Dict<c10::IValue, c10::IValue>& method_compile_spec) {
auto output_shapes = method_compile_spec.at("output_sizes").toList();
std::vector<mobile::nnc::OutputSpec> specs;
for (const auto& output_shape : output_shapes) {
mobile::nnc::OutputSpec spec;
spec.sizes_ = ((c10::IValue) output_shape).toIntVector();
spec.dtype_ = c10::ScalarType::Float;
specs.emplace_back(std::move(spec));
}
return specs;
}
// A fake NNC preprocess method, which only produces the compiled model but
// does not produce the assembly with the NNC compiler.
c10::IValue preprocess(
const torch::jit::Module& /* mod */,
const c10::Dict<c10::IValue, c10::IValue>& method_compile_spec,
const torch::jit::BackendDebugHandleGenerator&) {
torch::jit::mobile::nnc::CompilationUnit cu;
for (const auto& entry : method_compile_spec) {
const std::string& method_name = entry.key().toStringRef();
auto compile_spec = entry.value().toGenericDict();
auto func = std::make_unique<mobile::nnc::Function>();
func->set_name(method_name);
func->set_nnc_kernel_id(compile_spec.at("nnc_kernel_id").toStringRef());
func->set_input_specs(get_input_specs(compile_spec));
func->set_output_specs(get_output_specs(compile_spec));
func->set_parameters(compile_spec.at("parameters").toList());
mobile::nnc::MemoryPlan plan;
plan.buffer_sizes_ = compile_spec.at("buffer_sizes").toIntVector();
func->set_memory_plan(plan);
cu.register_function(std::move(func));
}
return cu.serialize();
}
static auto reg = torch::jit::backend_preprocess_register("nnc", preprocess);
struct FakeTensor : torch::CustomClassHolder {
explicit FakeTensor(std::vector<int64_t> data) : data_(std::move(data)) {}
int64_t get() {
return data_[0];
}
std::vector<int64_t> data_;
};
TORCH_LIBRARY(_TorchScriptTesting, m) {
m.class_<FakeTensor>("_MobileNNCFakeTensor")
.def(torch::init<std::vector<int64_t>>())
.def("get", &FakeTensor::get)
.def_pickle(
[](c10::intrusive_ptr<FakeTensor> self) { // __getstate__
return self->data_;
},
[](std::vector<int64_t> state) { // __setstate__
return c10::make_intrusive<FakeTensor>(std::move(state));
});
}
} // namespace
extern "C" {
@ -135,19 +55,11 @@ int add_kernel(void** args) {
return 0;
}
int fake_tensor_add_kernel(void** args) {
// out = input + param.get()
at::Tensor input = at::from_blob(args[0], {4, 4}, at::kFloat);
at::Tensor out = at::from_blob(args[1], {4, 4}, at::kFloat);
FakeTensor* param = reinterpret_cast<FakeTensor*>(args[2]);
out.copy_(at::add(input, param->get()));
return 0;
}
} // extern "C"
REGISTER_NNC_KERNEL("_add_kernel", add_kernel)
REGISTER_NNC_KERNEL("_fake_tensor_add_kernel", fake_tensor_add_kernel)
REGISTER_NNC_KERNEL(
"_add_kernel_nnc_fake_model:v1:forward:VERTOKEN",
add_kernel)
TEST(NNCBackendTest, AOTCompileThenExecute) {
torch::jit::Module m("m");
@ -165,16 +77,12 @@ TEST(NNCBackendTest, AOTCompileThenExecute) {
// Compile the model with NNC.
auto compile_spec = create_compile_spec(
"forward",
"_add_kernel",
{{4, 4}},
{{4, 4}},
c10::impl::toList(c10::List<at::Tensor>({param})),
{});
"forward", "_add_kernel_nnc_fake_model", "4,4", "float");
auto any_dict_ty =
c10::DictType::create(c10::StringType::get(), c10::AnyType::get());
auto frozen_m = torch::jit::freeze_module(m.clone());
auto compiled_module = torch::jit::detail::codegen_backend_module(
"nnc", m, compile_spec, any_dict_ty);
"nnc", frozen_m, compile_spec, any_dict_ty);
// Save the compiled model.
std::stringstream ss;
@ -185,49 +93,7 @@ TEST(NNCBackendTest, AOTCompileThenExecute) {
auto result = loaded_module.forward(inputs);
EXPECT_TRUE(result.toTensor().equal(3.0 * torch::ones({4, 4})));
EXPECT_TRUE(result.toTensor().equal(reference.toTensor()));
}
TEST(NNCBackendTest, FakeTensor) {
script::Module m("m");
auto param_cls = getCustomClass(
"__torch__.torch.classes._TorchScriptTesting._MobileNNCFakeTensor");
auto param_value = c10::make_intrusive<FakeTensor>(std::vector<int64_t>({3}));
m.register_attribute("param", param_cls, param_value, false);
m.define(
R"(
def forward(self, input):
return input + self.param.get()
)");
// Run the TorchScript module to get reference result.
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({4, 4}));
auto reference = m.forward(inputs);
// Compile the model with NNC.
auto params = c10::impl::GenericList(c10::AnyType::get());
params.emplace_back(param_value);
auto compile_spec = create_compile_spec(
"forward",
"_fake_tensor_add_kernel",
{{4, 4}},
{{4, 4}},
params,
{});
auto any_dict_ty =
c10::DictType::create(c10::StringType::get(), c10::AnyType::get());
auto compiled_module = torch::jit::detail::codegen_backend_module(
"nnc", m, compile_spec, any_dict_ty);
// Save the compiled model.
std::stringstream ss;
compiled_module._save_for_mobile(ss);
// Load and run the saved model.
auto loaded_module = _load_for_mobile(ss);
auto result = loaded_module.forward(inputs);
EXPECT_TRUE(result.toTensor().equal(5.0 * torch::ones({4, 4})));
EXPECT_TRUE(result.toTensor().equal(reference.toTensor()));
EXPECT_EQ(remove("fake_nnc_model.s"), 0);
}
} // namespace nnc

View File

@ -2,10 +2,14 @@
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#include <torch/csrc/jit/backends/backend.h>
#include <torch/csrc/jit/backends/backend_detail.h>
#include <torch/csrc/jit/backends/backend_preprocess.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/frozen_graph_optimizations.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
@ -16,6 +20,7 @@
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <fstream>
using namespace torch::jit;
using namespace torch::jit::tensorexpr;
@ -178,30 +183,6 @@ std::pair<std::unique_ptr<Function>, const std::string> aotCompile(
GRAPH_DEBUG("Method name ", method_name);
GRAPH_DEBUG("Kernel func name ", kernel_func_name);
CAFFE_ENFORCE(
sizes.size() == types.size(),
"Number of input sizes and input types should be the same");
std::vector<at::IValue> example_values;
std::vector<c10::optional<at::Tensor>> example_inputs;
for (int i = 0; i < sizes.size(); ++i) {
auto example_input = at::rand(sizes[i]).to(at::dtype(types[i]));
example_values.emplace_back(example_input);
example_inputs.emplace_back(example_input);
}
GRAPH_DUMP("graph before compiler passes ", g);
tensorexpr::removeUnusedSelfArgument(g);
g = TraceGraph(g, example_values);
// TODO: Remove annotateInputShapes pass when TraceGraph can also capture
// input shapes
tensorexpr::annotateInputShapes(g, example_inputs);
RemoveListMutation(g);
RemoveTensorMutation(g);
EliminateDeadCode(g);
LowerAllTuples(g);
GRAPH_DUMP("graph after compiler passes ", g);
std::shared_ptr<tensorexpr::TensorExprKernel> kernel =
std::make_shared<tensorexpr::TensorExprKernel>(
TensorExprKernel(g, kernel_func_name));
@ -212,6 +193,174 @@ std::pair<std::unique_ptr<Function>, const std::string> aotCompile(
return std::make_pair(std::move(func), compiled_assembly);
}
void writeOutputLlvmAssembly(
const std::string& asm_code,
const std::string& output_llvm_file_name) {
std::ofstream output(output_llvm_file_name);
output << asm_code;
GRAPH_DEBUG(
"The compiled llvm assembly code was saved to ", output_llvm_file_name);
}
std::vector<std::string> split(
char separator,
const std::string& string,
bool ignore_empty = true) {
std::vector<std::string> pieces;
std::stringstream ss(string);
std::string item;
while (getline(ss, item, separator)) {
if (!ignore_empty || !item.empty()) {
pieces.push_back(std::move(item));
}
}
return pieces;
}
std::vector<std::vector<int64_t>> parseInputShapes(
const std::string& input_dims_s) {
std::vector<std::string> input_dims_list = split(';', input_dims_s);
std::vector<std::vector<int64_t>> inputs;
for (const auto& input_dims_item : input_dims_list) {
auto input_dims_str = split(',', input_dims_item);
std::vector<int64_t> input_dims;
input_dims.reserve(input_dims_str.size());
for (const auto& s : input_dims_str) {
input_dims.push_back(c10::stoi(s));
}
inputs.push_back(input_dims);
}
return inputs;
}
std::vector<at::ScalarType> parseInputTypes(
const std::string& input_types_str) {
std::vector<std::string> inputTypes = split(';', input_types_str);
std::vector<at::ScalarType> scalarTypes;
for (const auto& inputType : inputTypes) {
at::ScalarType scalarType;
if (inputType == "float") {
scalarType = at::ScalarType::Float;
} else if (inputType == "uint8") {
scalarType = at::ScalarType::Byte;
} else if (inputType == "int64") {
scalarType = at::ScalarType::Long;
} else {
CAFFE_THROW("Unsupported input type: ", inputType);
}
scalarTypes.push_back(scalarType);
}
return scalarTypes;
}
std::string getNncKernelId(
const std::string& model_name,
const std::string& model_version,
const std::string& method_name) {
// TODO: calculate the version_token.
const std::string version_token = "VERTOKEN";
return model_name + ":" + model_version + ":" + method_name + ":" +
version_token;
}
std::string getNncKernelFuncName(
const std::string& model_name,
const std::string& model_version,
const std::string& method_name) {
return "nnc_" + model_name + "_" + model_version + "_" + method_name;
}
std::shared_ptr<Graph> preprocessGraphPasses(
std::shared_ptr<Graph>& graph,
const std::vector<c10::optional<at::Tensor>>& example_inputs) {
GRAPH_DEBUG("Before preprocessing graph passes: ", *graph);
torch::jit::RemoveTensorMutation(graph);
torch::jit::EliminateDeadCode(graph->block());
graph = torch::jit::tensorexpr::removeUnusedSelfArgument(graph);
torch::jit::tensorexpr::annotateInputShapes(graph, example_inputs);
torch::jit::OptimizeFrozenGraph(graph, true);
torch::jit::PropagateShapesOnGraph(graph);
torch::jit::PeepholeOptimize(graph, false);
torch::jit::ConstantPropagation(graph);
torch::jit::PropagateShapesOnGraph(graph);
torch::jit::PeepholeOptimize(graph, false);
torch::jit::ConstantPropagation(graph);
tensorexpr::removeUnusedSelfArgument(graph);
std::vector<at::IValue> example_values;
example_values.reserve(example_inputs.size());
for (auto example_input : example_inputs) {
example_values.emplace_back(*example_input);
}
graph = TraceGraph(graph, example_values);
// TODO: Remove annotateInputShapes pass when TraceGraph can also capture
// input shapes
tensorexpr::annotateInputShapes(graph, example_inputs);
RemoveListMutation(graph);
RemoveTensorMutation(graph);
EliminateDeadCode(graph);
LowerAllTuples(graph);
GRAPH_DEBUG("After preprocessing graph passes: ", *graph);
return graph;
}
std::vector<c10::optional<at::Tensor>> generateExampleInputs(
const std::vector<std::vector<int64_t>>& inputShapes,
const std::vector<at::ScalarType>& inputTypes) {
std::vector<c10::optional<at::Tensor>> example_inputs;
example_inputs.reserve(inputShapes.size());
for (int i = 0; i < inputShapes.size(); ++i) {
example_inputs.emplace_back(
at::rand(inputShapes[i]).to(at::dtype(inputTypes[i])));
}
return example_inputs;
}
c10::IValue preprocess(
const torch::jit::Module& mod,
const c10::Dict<c10::IValue, c10::IValue>& compile_spec,
const torch::jit::BackendDebugHandleGenerator& generate_debug_handles) {
torch::jit::mobile::nnc::CompilationUnit cu;
for (const auto& kv : compile_spec) {
GRAPH_DEBUG("Key: ", kv.key());
GRAPH_DEBUG("Value: ", kv.value());
std::string method_name = *(kv.key().toString());
GRAPH_DEBUG("Method name: ", method_name);
auto method_spec = kv.value().toGenericDict();
std::string model_name = *method_spec.at("model_name").toString();
std::string model_version = *method_spec.at("model_version").toString();
std::string asmfile_name = *method_spec.at("asmfile").toString();
GRAPH_DEBUG("Model name: ", model_name);
GRAPH_DEBUG("Model version: ", model_version);
GRAPH_DEBUG("Asm file name: ", asmfile_name);
auto method = mod.get_method(method_name);
auto graph = toGraphFunction(method.function()).graph()->copy();
auto sizes = parseInputShapes(*method_spec.at("sizes").toString());
auto types = parseInputTypes(*method_spec.at("types").toString());
auto example_inputs = generateExampleInputs(sizes, types);
graph = preprocessGraphPasses(graph, example_inputs);
auto kernel_func_name =
getNncKernelFuncName(model_name, model_version, method_name);
auto compiled = torch::jit::mobile::nnc::aotCompile(
method_name, graph, sizes, types, kernel_func_name);
writeOutputLlvmAssembly(compiled.second, asmfile_name);
auto func = std::move(compiled.first);
func->set_nnc_kernel_id(
getNncKernelId(model_name, model_version, method_name));
cu.register_function(std::move(func));
}
return cu.serialize();
}
static auto reg = torch::jit::backend_preprocess_register("nnc", preprocess);
} // namespace nnc
} // namespace mobile
} // namespace jit