[FX] Refactor immutable collections implementation (#144640)

Get rid of dynamic class creation via `type(name, bases, ...)`. Convert it to classic static class definition for better readability and static analysis support.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144640
Approved by: https://github.com/jansel
ghstack dependencies: #147699
This commit is contained in:
Xuehai Pan
2025-02-24 00:24:44 +08:00
committed by PyTorch MergeBot
parent dc9a03d30c
commit a50af71fb6
7 changed files with 84 additions and 75 deletions

View File

@ -4536,7 +4536,7 @@ class DefaultsTests(torch._dynamo.test_case.TestCase):
immutable_inputs = torch.fx.immutable_collections.immutable_list(inputs)
try:
immutable_inputs.append(x)
except NotImplementedError:
except TypeError:
pass
return torch.fx.node.map_aggregate(immutable_inputs, f)

View File

@ -3039,7 +3039,7 @@ class TestFX(JitTestCase):
from torch.fx.immutable_collections import immutable_list
x = immutable_list([3, 4])
with self.assertRaisesRegex(NotImplementedError, "new_args"):
with self.assertRaisesRegex(TypeError, "new_args"):
x[0] = 4
def test_partial_trace(self):

View File

@ -70,7 +70,7 @@ def call_delegate_cpu(
input_args: list[torch.Tensor],
) -> list[torch.Tensor]:
# FX creates this immutable_dict/list concept. Get rid of this.
map_types = {
map_types: dict[type, type] = {
torch.fx.immutable_collections.immutable_dict: dict,
torch.fx.immutable_collections.immutable_list: list,
}

View File

@ -74,7 +74,7 @@ def trace_call_delegate(proxy_mode, func_overload, lowered_module, *args):
# pyre-ignore
def call_delegate_cpu(lowered_module, *args):
# FX creates this immutable_dict/list concept. Get rid of this.
map_types = {
map_types: dict[type, type] = {
torch.fx.immutable_collections.immutable_dict: dict,
torch.fx.immutable_collections.immutable_list: list,
}

View File

@ -589,7 +589,11 @@ class _TargetArgsExpr(_TargetExpr):
def pytree_flatten(
args: Sequence[Any], kwargs: Mapping[Any, Any]
) -> tuple[Sequence[Any], Union[_SimpleSpec, pytree.TreeSpec]]:
type_mapping = {immutable_list: tuple, list: tuple, immutable_dict: dict}
type_mapping: dict[type, type] = {
immutable_list: tuple,
list: tuple,
immutable_dict: dict,
}
def convert_type(x: Any) -> Any:
cls = type(x)

View File

@ -84,6 +84,7 @@ Several example transformations can be found at the
repository.
'''
from torch.fx import immutable_collections
from torch.fx._symbolic_trace import ( # noqa: F401
PH,
ProxyableClassMeta,

View File

@ -1,6 +1,6 @@
# mypy: allow-untyped-defs
from collections.abc import Iterable
from typing import Any
from typing import Any, NoReturn, TypeVar
from typing_extensions import Self
from torch.utils._pytree import (
_dict_flatten,
@ -18,97 +18,94 @@ from ._compatibility import compatibility
__all__ = ["immutable_list", "immutable_dict"]
_help_mutation = """\
_help_mutation = """
If you are attempting to modify the kwargs or args of a torch.fx.Node object,
instead create a new copy of it and assign the copy to the node:
new_args = ... # copy and mutate args
new_args = ... # copy and mutate args
node.args = new_args
"""
""".strip()
def _no_mutation(self, *args, **kwargs):
raise NotImplementedError(
f"'{type(self).__name__}' object does not support mutation. {_help_mutation}",
_T = TypeVar("_T")
_KT = TypeVar("_KT")
_VT = TypeVar("_VT")
def _no_mutation(self: Any, *args: Any, **kwargs: Any) -> NoReturn:
raise TypeError(
f"{type(self).__name__!r} object does not support mutation. {_help_mutation}",
)
def _create_immutable_container(base, mutable_functions):
container = type("immutable_" + base.__name__, (base,), {})
for attr in mutable_functions:
setattr(container, attr, _no_mutation)
return container
@compatibility(is_backward_compatible=True)
class immutable_list(list[_T]):
"""An immutable version of :class:`list`."""
__delitem__ = _no_mutation
__iadd__ = _no_mutation
__imul__ = _no_mutation
__setitem__ = _no_mutation
append = _no_mutation
clear = _no_mutation
extend = _no_mutation
insert = _no_mutation
pop = _no_mutation
remove = _no_mutation
reverse = _no_mutation
sort = _no_mutation
def __hash__(self) -> int: # type: ignore[override]
return hash(tuple(self))
def __reduce__(self) -> tuple[type[Self], tuple[tuple[_T, ...]]]:
return (type(self), (tuple(self),))
immutable_list = _create_immutable_container(
list,
(
"__delitem__",
"__iadd__",
"__imul__",
"__setitem__",
"append",
"clear",
"extend",
"insert",
"pop",
"remove",
"reverse",
"sort",
),
)
immutable_list.__reduce__ = lambda self: (immutable_list, (tuple(iter(self)),))
immutable_list.__hash__ = lambda self: hash(tuple(self))
@compatibility(is_backward_compatible=True)
class immutable_dict(dict[_KT, _VT]):
"""An immutable version of :class:`dict`."""
compatibility(is_backward_compatible=True)(immutable_list)
__delitem__ = _no_mutation
__ior__ = _no_mutation
__setitem__ = _no_mutation
clear = _no_mutation
pop = _no_mutation
popitem = _no_mutation
setdefault = _no_mutation
update = _no_mutation # type: ignore[assignment]
immutable_dict = _create_immutable_container(
dict,
(
"__delitem__",
"__ior__",
"__setitem__",
"clear",
"pop",
"popitem",
"setdefault",
"update",
),
)
immutable_dict.__reduce__ = lambda self: (immutable_dict, (iter(self.items()),))
immutable_dict.__hash__ = lambda self: hash(tuple(self.items()))
compatibility(is_backward_compatible=True)(immutable_dict)
def __hash__(self) -> int: # type: ignore[override]
return hash(frozenset(self.items()))
def __reduce__(self) -> tuple[type[Self], tuple[tuple[tuple[_KT, _VT], ...]]]:
return (type(self), (tuple(self.items()),))
# Register immutable collections for PyTree operations
def _immutable_dict_flatten(d: dict[Any, Any]) -> tuple[list[Any], Context]:
return _dict_flatten(d)
def _immutable_dict_unflatten(
values: Iterable[Any],
context: Context,
) -> dict[Any, Any]:
return immutable_dict(_dict_unflatten(values, context))
def _immutable_list_flatten(d: list[Any]) -> tuple[list[Any], Context]:
def _immutable_list_flatten(d: immutable_list[_T]) -> tuple[list[_T], Context]:
return _list_flatten(d)
def _immutable_list_unflatten(
values: Iterable[Any],
values: Iterable[_T],
context: Context,
) -> list[Any]:
) -> immutable_list[_T]:
return immutable_list(_list_unflatten(values, context))
register_pytree_node(
immutable_dict,
_immutable_dict_flatten,
_immutable_dict_unflatten,
serialized_type_name="torch.fx.immutable_collections.immutable_dict",
flatten_with_keys_fn=_dict_flatten_with_keys,
)
def _immutable_dict_flatten(d: immutable_dict[Any, _VT]) -> tuple[list[_VT], Context]:
return _dict_flatten(d)
def _immutable_dict_unflatten(
values: Iterable[_VT],
context: Context,
) -> immutable_dict[Any, _VT]:
return immutable_dict(_dict_unflatten(values, context))
register_pytree_node(
immutable_list,
_immutable_list_flatten,
@ -116,3 +113,10 @@ register_pytree_node(
serialized_type_name="torch.fx.immutable_collections.immutable_list",
flatten_with_keys_fn=_list_flatten_with_keys,
)
register_pytree_node(
immutable_dict,
_immutable_dict_flatten,
_immutable_dict_unflatten,
serialized_type_name="torch.fx.immutable_collections.immutable_dict",
flatten_with_keys_fn=_dict_flatten_with_keys,
)