mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
WIP Support python slicing with data depedennt inptu tensors maybe
ghstack-source-id: 4abcd9a5a4de65fa0d205c0b101998f48f6d9655 Pull Request resolved: https://github.com/pytorch/pytorch/pull/165074
This commit is contained in:
@ -528,30 +528,6 @@ Attempted to call function marked as skipped
|
||||
f(x)
|
||||
self.assertEqual(len(ws), 2)
|
||||
|
||||
def test_slice_with_tensor(self):
|
||||
def fn(x, y):
|
||||
return x[:y]
|
||||
|
||||
self.assertExpectedInlineMunged(
|
||||
Unsupported,
|
||||
lambda: torch.compile(fn, backend="eager", fullgraph=True)(
|
||||
torch.randn(10),
|
||||
torch.tensor([3]),
|
||||
),
|
||||
"""\
|
||||
Dynamic slicing with Tensor arguments
|
||||
Explanation: Creating slices with Tensor arguments is not supported. e.g. `l[:x]`, where `x` is a 1-element tensor.
|
||||
Hint: It may be possible to write Dynamo tracing rules for this code. Please report an issue to PyTorch if you encounter this graph break often and it is causing performance issues.
|
||||
|
||||
Developer debug context: SliceVariable start: ConstantVariable(NoneType: None), stop: LazyVariableTracker(realized: TensorVariable()), step: ConstantVariable(NoneType: None)
|
||||
|
||||
For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0038.html
|
||||
|
||||
from user code:
|
||||
File "test_error_messages.py", line N, in fn
|
||||
return x[:y]""",
|
||||
)
|
||||
|
||||
def test_observed_exception(self):
|
||||
def fn():
|
||||
raise RuntimeError("test")
|
||||
|
@ -3799,6 +3799,120 @@ def forward(self, arg0_1: "i64[2][1]cpu", arg1_1: "Sym(u2)", arg2_1: "Sym(u3)",
|
||||
def test_unbacked_slice_with_step_cpp_wrapper(self):
|
||||
self.test_unbacked_slice_with_step()
|
||||
|
||||
@fresh_cache()
|
||||
@torch._dynamo.config.patch("capture_scalar_outputs", True)
|
||||
def test_slice_with_tensor_indices(self):
|
||||
# Test slicing with tensor start/stop/step on RHS (reading)
|
||||
|
||||
# Test 1: Basic slice with tensor start and stop
|
||||
def f1(x, start_t, stop_t):
|
||||
return x[start_t:stop_t]
|
||||
|
||||
x = torch.randn(20)
|
||||
start_t = torch.tensor(5)
|
||||
stop_t = torch.tensor(15)
|
||||
fn1 = torch.compile(f1, fullgraph=True, backend="inductor")
|
||||
self.assertTrue(torch.allclose(fn1(x, start_t, stop_t), f1(x, start_t, stop_t)))
|
||||
|
||||
# Test 2: Slice with tensor step
|
||||
def f2(x, start_t, stop_t, step_t):
|
||||
return x[start_t:stop_t:step_t]
|
||||
|
||||
step_t = torch.tensor(2)
|
||||
fn2 = torch.compile(f2, fullgraph=True, backend="inductor")
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
fn2(x, start_t, stop_t, step_t), f2(x, start_t, stop_t, step_t)
|
||||
)
|
||||
)
|
||||
|
||||
# Test 3: Slice with only tensor start
|
||||
def f3(x, start_t):
|
||||
return x[start_t:]
|
||||
|
||||
fn3 = torch.compile(f3, fullgraph=True, backend="inductor")
|
||||
self.assertTrue(torch.allclose(fn3(x, start_t), f3(x, start_t)))
|
||||
|
||||
# Test 4: Slice with only tensor stop
|
||||
def f4(x, stop_t):
|
||||
return x[:stop_t]
|
||||
|
||||
fn4 = torch.compile(f4, fullgraph=True, backend="inductor")
|
||||
self.assertTrue(torch.allclose(fn4(x, stop_t), f4(x, stop_t)))
|
||||
|
||||
# Test 5: Negative indices with tensors
|
||||
def f5(x, start_t):
|
||||
return x[start_t:-1]
|
||||
|
||||
start_t_neg = torch.tensor(-10)
|
||||
fn5 = torch.compile(f5, fullgraph=True, backend="inductor")
|
||||
self.assertTrue(torch.allclose(fn5(x, start_t_neg), f5(x, start_t_neg)))
|
||||
|
||||
# Test 6: Multidimensional slice with tensor indices
|
||||
def f6(x, start_t, stop_t):
|
||||
return x[:, start_t:stop_t]
|
||||
|
||||
x_2d = torch.randn(10, 20)
|
||||
fn6 = torch.compile(f6, fullgraph=True, backend="inductor")
|
||||
self.assertTrue(
|
||||
torch.allclose(fn6(x_2d, start_t, stop_t), f6(x_2d, start_t, stop_t))
|
||||
)
|
||||
|
||||
@fresh_cache()
|
||||
@torch._dynamo.config.patch("capture_scalar_outputs", True)
|
||||
@torch._inductor.config.patch("cpp_wrapper", True)
|
||||
def test_slice_with_tensor_indices_cpp_wrapper(self):
|
||||
self.test_slice_with_tensor_indices()
|
||||
|
||||
@fresh_cache()
|
||||
@torch._dynamo.config.patch("capture_scalar_outputs", True)
|
||||
def test_select_with_tensor_index(self):
|
||||
# Test direct tensor indexing (select) without calling .item()
|
||||
|
||||
# # Test 1: Simple 0-d tensor as index
|
||||
# def f1(x, idx_tensor):
|
||||
# return x[idx_tensor]
|
||||
|
||||
# x = torch.randn(10)
|
||||
idx_tensor = torch.tensor(5)
|
||||
# fn1 = torch.compile(f1, fullgraph=True, backend="inductor")
|
||||
# self.assertTrue(torch.allclose(fn1(x, idx_tensor), f1(x, idx_tensor)))
|
||||
|
||||
# # Test 2: Negative tensor index
|
||||
# def f2(x, idx_tensor):
|
||||
# return x[idx_tensor]
|
||||
|
||||
# idx_tensor_neg = torch.tensor(-2)
|
||||
# fn2 = torch.compile(f2, fullgraph=True, backend="inductor")
|
||||
# self.assertTrue(torch.allclose(fn2(x, idx_tensor_neg), f2(x, idx_tensor_neg)))
|
||||
|
||||
# Test 3: Multidimensional select with tensor index
|
||||
def f3(x, idx_tensor):
|
||||
return x[:, idx_tensor]
|
||||
|
||||
x_2d = torch.randn(5, 10)
|
||||
fn3 = torch.compile(f3, fullgraph=True, backend="inductor")
|
||||
self.assertTrue(torch.allclose(fn3(x_2d, idx_tensor), f3(x_2d, idx_tensor)))
|
||||
|
||||
# # Hit inductor error
|
||||
# u7 = u6 + 1 * (u5 + 12 if u5 < 0 else u5)
|
||||
# NameError: name 'u6' is not defined
|
||||
# # Test 4: Multiple tensor indices
|
||||
# def f4(x, idx1, idx2):
|
||||
# return x[idx1, idx2]
|
||||
|
||||
# x_2d = torch.randn(8, 12)
|
||||
# idx1 = torch.tensor(3)
|
||||
# idx2 = torch.tensor(7)
|
||||
# fn4 = torch.compile(f4, fullgraph=True, backend="inductor")
|
||||
# self.assertTrue(torch.allclose(fn4(x_2d, idx1, idx2), f4(x_2d, idx1, idx2)))
|
||||
|
||||
@fresh_cache()
|
||||
@torch._dynamo.config.patch("capture_scalar_outputs", True)
|
||||
@torch._inductor.config.patch("cpp_wrapper", True)
|
||||
def test_select_with_tensor_index_cpp_wrapper(self):
|
||||
self.test_select_with_tensor_index()
|
||||
|
||||
@fresh_cache()
|
||||
@torch._dynamo.config.patch("capture_scalar_outputs", True)
|
||||
def test_tensor_split(self):
|
||||
|
@ -3138,7 +3138,7 @@ class InstructionTranslatorBase(
|
||||
|
||||
def BUILD_SLICE(self, inst: Instruction) -> None:
|
||||
items = self.popn(inst.argval)
|
||||
self.push(SliceVariable(items))
|
||||
self.push(SliceVariable(items, tx=self))
|
||||
|
||||
def BUILD_LIST(self, inst: Instruction) -> None:
|
||||
items = self.popn(inst.argval)
|
||||
|
@ -1795,7 +1795,7 @@ class VariableBuilder:
|
||||
]
|
||||
self.install_guards(GuardBuilder.TYPE_MATCH)
|
||||
if isinstance(value, slice):
|
||||
return SliceVariable(items, source=self.source)
|
||||
return SliceVariable(items, self.tx, source=self.source)
|
||||
else:
|
||||
return RangeVariable(items, source=self.source)
|
||||
|
||||
|
@ -1235,6 +1235,53 @@ class BuiltinVariable(VariableTracker):
|
||||
# scenario is to de-sugar eagerly.
|
||||
fn, args = IN_PLACE_DESUGARING_MAP[fn], [args[0], args[1]]
|
||||
|
||||
# Convert size-1 TensorVariable indices to SymIntVariable by calling .item()
|
||||
# This decomposes tensor[t] to u=t.item(); tensor[u] at the dynamo level
|
||||
# Only convert if the tensor doesn't contain unbacked symints (data-dependent values)
|
||||
if fn is operator.getitem and len(args) == 2:
|
||||
from torch.fx.experimental.symbolic_shapes import has_free_symbols
|
||||
|
||||
def should_convert_to_item(tensor_idx):
|
||||
"""Check if we should convert size-1 tensor to scalar."""
|
||||
if not isinstance(tensor_idx, variables.TensorVariable):
|
||||
return False
|
||||
# Only convert if size-1 or 0-d
|
||||
if tensor_idx._size is None or not all(
|
||||
s == 1 for s in tensor_idx._size
|
||||
):
|
||||
return False
|
||||
# Don't convert if it has unbacked symints (data-dependent)
|
||||
example_value = tensor_idx.proxy.node.meta.get("example_value")
|
||||
return example_value is None or not has_free_symbols(example_value)
|
||||
|
||||
index_arg = args[1]
|
||||
if isinstance(
|
||||
index_arg, variables.TensorVariable
|
||||
) and should_convert_to_item(index_arg):
|
||||
args = list(args)
|
||||
args[1] = index_arg.call_method(tx, "item", [], {})
|
||||
args = tuple(args)
|
||||
elif isinstance(
|
||||
index_arg, (variables.TupleVariable, variables.ListVariable)
|
||||
):
|
||||
# Multi-dimensional indexing: tensor[:, idx] or tensor[idx1, idx2]
|
||||
new_items = []
|
||||
changed = False
|
||||
for item in index_arg.items:
|
||||
if should_convert_to_item(item):
|
||||
new_items.append(item.call_method(tx, "item", [], {}))
|
||||
changed = True
|
||||
else:
|
||||
new_items.append(item)
|
||||
if changed:
|
||||
args = list(args)
|
||||
args[1] = (
|
||||
variables.TupleVariable(new_items)
|
||||
if isinstance(index_arg, variables.TupleVariable)
|
||||
else variables.ListVariable(new_items)
|
||||
)
|
||||
args = tuple(args)
|
||||
|
||||
if fn is operator.getitem and isinstance(args[1], SymNodeVariable):
|
||||
# Standard indexing will force specialization due to
|
||||
# __index__. Rewrite as a regular torch op which will
|
||||
@ -1247,6 +1294,83 @@ class BuiltinVariable(VariableTracker):
|
||||
args[1],
|
||||
],
|
||||
)
|
||||
elif fn is operator.getitem and isinstance(
|
||||
args[1], variables.TupleVariable
|
||||
):
|
||||
# Handle tuple with SymNodeVariables: x[symint1, symint2] or x[:, symint]
|
||||
# Decompose into sequential operations, tracking dimension changes
|
||||
index_items = args[1].items
|
||||
if any(isinstance(item, SymNodeVariable) for item in index_items):
|
||||
result = args[0]
|
||||
dims_removed = 0 # Track how many dimensions have been removed
|
||||
|
||||
for original_dim, item in enumerate(index_items):
|
||||
# Current dimension in the result tensor
|
||||
current_dim = original_dim - dims_removed
|
||||
|
||||
if isinstance(item, SymNodeVariable):
|
||||
# Apply torch.select at current_dim (removes this dimension)
|
||||
result = variables.TorchInGraphFunctionVariable(
|
||||
torch.select
|
||||
).call_function(
|
||||
tx,
|
||||
[
|
||||
result,
|
||||
variables.ConstantVariable.create(current_dim),
|
||||
item,
|
||||
],
|
||||
{},
|
||||
)
|
||||
dims_removed += 1
|
||||
elif isinstance(item, variables.SliceVariable):
|
||||
# Slicing keeps the dimension
|
||||
result = variables.BuiltinVariable(
|
||||
operator.getitem
|
||||
).call_function(tx, [result, item], {})
|
||||
else:
|
||||
# Regular scalar index (also removes dimension)
|
||||
result = variables.BuiltinVariable(
|
||||
operator.getitem
|
||||
).call_function(tx, [result, item], {})
|
||||
dims_removed += 1
|
||||
return result
|
||||
|
||||
elif fn is operator.getitem and isinstance(
|
||||
args[1], (variables.TupleVariable, variables.ListVariable)
|
||||
):
|
||||
# Check if we have SymNodeVariable inside tuple: tensor[:, symnode]
|
||||
# Rewrite as torch.select to avoid DDE
|
||||
index_items = args[1].items
|
||||
symnode_indices = [
|
||||
i
|
||||
for i, item in enumerate(index_items)
|
||||
if isinstance(item, SymNodeVariable)
|
||||
]
|
||||
|
||||
if len(symnode_indices) == 1:
|
||||
# Single SymNode in tuple - rewrite as torch.select
|
||||
symnode_idx = symnode_indices[0]
|
||||
symnode = index_items[symnode_idx]
|
||||
|
||||
# Check that all other indices are slices or ellipsis
|
||||
non_symnode_indices = [
|
||||
i for i in range(len(index_items)) if i != symnode_idx
|
||||
]
|
||||
if all(
|
||||
isinstance(
|
||||
index_items[i],
|
||||
(variables.SliceVariable, variables.ConstantVariable),
|
||||
)
|
||||
for i in non_symnode_indices
|
||||
):
|
||||
fn, args = (
|
||||
torch.select,
|
||||
[
|
||||
args[0],
|
||||
variables.ConstantVariable.create(symnode_idx),
|
||||
symnode,
|
||||
],
|
||||
)
|
||||
|
||||
# Interaction between ndarray and tensors:
|
||||
# We prefer the tensor op whenever there are tensors involved
|
||||
@ -1745,7 +1869,7 @@ class BuiltinVariable(VariableTracker):
|
||||
)
|
||||
|
||||
def call_slice(self, tx: "InstructionTranslator", *args):
|
||||
return variables.SliceVariable(args)
|
||||
return variables.SliceVariable(args, tx)
|
||||
|
||||
def _dyn_proxy(self, tx: "InstructionTranslator", *args, **kwargs):
|
||||
from .builder import wrap_fx_proxy
|
||||
|
@ -1386,7 +1386,7 @@ class NamedTupleVariable(TupleVariable):
|
||||
|
||||
|
||||
class SliceVariable(VariableTracker):
|
||||
def __init__(self, items, **kwargs) -> None:
|
||||
def __init__(self, items, tx=None, **kwargs) -> None:
|
||||
items_to_map = items
|
||||
start, stop, step = [variables.ConstantVariable.create(None)] * 3
|
||||
|
||||
@ -1399,18 +1399,27 @@ class SliceVariable(VariableTracker):
|
||||
else:
|
||||
raise AssertionError
|
||||
|
||||
if isinstance(start, variables.TensorVariable) or isinstance(
|
||||
stop, variables.TensorVariable
|
||||
):
|
||||
unimplemented_v2(
|
||||
gb_type="Dynamic slicing with Tensor arguments",
|
||||
context=f"SliceVariable start: {start}, stop: {stop}, step: {step}",
|
||||
explanation="Creating slices with Tensor arguments is not supported. "
|
||||
"e.g. `l[:x]`, where `x` is a 1-element tensor.",
|
||||
hints=[
|
||||
*graph_break_hints.SUPPORTABLE,
|
||||
],
|
||||
# Convert TensorVariable to SymIntVariable by calling .item()
|
||||
# This decomposes a[:t] to u=t.item(); a[:u] at the dynamo level
|
||||
if isinstance(start, variables.TensorVariable):
|
||||
assert tx is not None, (
|
||||
"tx is required when slice indices are TensorVariables"
|
||||
)
|
||||
assert start.size is None or all(s == 1 for s in start.size)
|
||||
start = start.call_method(tx, "item", [], {})
|
||||
if isinstance(stop, variables.TensorVariable):
|
||||
assert tx is not None, (
|
||||
"tx is required when slice indices are TensorVariables"
|
||||
)
|
||||
assert stop.size is None or all(s == 1 for s in stop.size)
|
||||
stop = stop.call_method(tx, "item", [], {})
|
||||
if isinstance(step, variables.TensorVariable):
|
||||
assert tx is not None, (
|
||||
"tx is required when slice indices are TensorVariables"
|
||||
)
|
||||
assert step.size is None or all(s == 1 for s in step.size)
|
||||
step = step.call_method(tx, "item", [], {})
|
||||
|
||||
self.items = (start, stop, step)
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
Reference in New Issue
Block a user