Fix invalid f-strings (#164112)

Fixes invalid f-strings detected by `ruff`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164112
Approved by: https://github.com/Skylion007, https://github.com/mlazos
This commit is contained in:
Yuanyuan Chen
2025-09-30 04:17:13 +00:00
committed by PyTorch MergeBot
parent 9f27b0c245
commit a293206bd5
8 changed files with 13 additions and 13 deletions

View File

@ -2271,7 +2271,7 @@ class LocalRankTest(MultiProcessTestCase):
if __name__ == "__main__":
if device_type != "cpu":
assert not torch.get_device_module()._initialized, (
"test_distributed must not have initialized {device_type} context on main process"
f"test_distributed must not have initialized {device_type} context on main process"
)
run_tests()

View File

@ -5244,7 +5244,7 @@ tensor(..., device='meta', size=(1,), requires_grad=True)""")
return torch.contiguous_format
if memory_format in (torch.contiguous_format, torch.channels_last, torch.channels_last_3d):
return memory_format
raise ValueError("Unable to detect memory format for backend={backend} and memory_format={memory_format}")
raise ValueError(f"Unable to detect memory format for backend={backend} and memory_format={memory_format}")
def _get_memory_format(t: torch.Tensor) -> torch.memory_format:
if t.is_contiguous(memory_format=torch.contiguous_format):

View File

@ -341,7 +341,7 @@ def helper_for_dump_minify(contents: str) -> None:
except OSError as e:
log.exception("")
raise NotImplementedError("Could not write to {minified_repro_path}") from e
raise NotImplementedError(f"Could not write to {minified_repro_path}") from e
class AccuracyError(Exception):

View File

@ -196,14 +196,14 @@ def associative_scan(
def _validate_input(cfn, lxs, d, r, cm):
# Basic arguments check
if not callable(cfn):
raise ValueError("Combine_fn must be a callable, but got {cfn}")
raise ValueError(f"Combine_fn must be a callable, but got {cfn}")
if not isinstance(d, int):
raise ValueError("Dim must be an int, but got " + str(type(d)))
if not isinstance(r, bool):
raise RuntimeError("Reverse must be a bool, but got " + str(type(r)))
if cm not in ["pointwise", "generic"]:
raise ValueError(
"Combine_mode must either 'pointwise' or 'generic', but got {cm}"
f"Combine_mode must either 'pointwise' or 'generic', but got {cm}"
)
if cm == "pointwise" and not all(l.device.type == "cuda" for l in lxs):
raise ValueError(

View File

@ -153,7 +153,7 @@ def scan(
def _validate_input(cfn, lxs, linit, d, r):
# Basic arguments check
if not callable(cfn):
raise RuntimeError("Combine_fn must be a callable, but got {cfn}")
raise RuntimeError(f"Combine_fn must be a callable, but got {cfn}")
if not isinstance(d, int):
raise RuntimeError("Dim must be an int, but got " + str(type(d)))
if not isinstance(r, bool):

View File

@ -3613,7 +3613,7 @@ def istft(
n_fft // 2 + 1 == fft_size,
lambda: (
"istft expected the frequency dimension (3rd to the last) of the input tensor "
+ "to match n_fft / 2 + 1 when onesided=True, but got {fft_size}"
+ f"to match n_fft / 2 + 1 when onesided=True, but got {fft_size}"
),
)
else:
@ -3621,7 +3621,7 @@ def istft(
n_fft == fft_size,
lambda: (
"istft expected the frequency dimension (3rd to the last) of the input tensor "
+ "to match n_fft when onesided=False, but got {fft_size}",
+ f"to match n_fft when onesided=False, but got {fft_size}",
),
)

View File

@ -1952,7 +1952,7 @@ class _PipelineScheduleRuntime(PipelineScheduleMulti):
stage_idx,
mb_index,
) not in bwd_recv_ops, (
"Recv twice for {stage_idx=} {mb_index=} without executing backward"
f"Recv twice for {stage_idx=} {mb_index=} without executing backward"
)
bwd_recv_ops[(stage_idx, mb_index)] = _batch_p2p(
stage.get_bwd_recv_ops(mb_index)

View File

@ -384,7 +384,7 @@ def _softmax_backward_data(func, *args, **kwargs):
if is_masked_tensor(grad) and is_masked_tensor(output):
if not _masks_match(grad, output):
raise ValueError(
"__torch_dispatch__, {func}: expected the masks of grad and output to match"
f"__torch_dispatch__, {func}: expected the masks of grad and output to match"
)
grad_data = _get_data(grad)
new_grad_data = torch.ops.aten._masked_softmax_backward(
@ -434,7 +434,7 @@ def _to_sparse(func, *args, **kwargs):
args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0
)
if not torch.is_tensor(args[0]):
raise TypeError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
raise TypeError(f"__torch_dispatch__, {func}: expected args[0] to be a tensor")
mt = args[0]
if not is_masked_tensor(mt):
mt = MaskedTensor(mt, torch.ones_like(mt, dtype=torch.bool))
@ -451,7 +451,7 @@ def _to_sparse_csr(func, *args, **kwargs):
args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0
)
if not torch.is_tensor(args[0]):
raise ValueError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
raise ValueError(f"__torch_dispatch__, {func}: expected args[0] to be a tensor")
mt = args[0]
if not is_masked_tensor(mt):
mt = MaskedTensor(mt, torch.ones_like(mt).bool())
@ -468,7 +468,7 @@ def _to_dense(func, *args, **kwargs):
args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0
)
if not torch.is_tensor(args[0]):
raise ValueError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
raise ValueError(f"__torch_dispatch__, {func}: expected args[0] to be a tensor")
mt = args[0]
if not is_masked_tensor(mt):
mt = MaskedTensor(mt, torch.ones_like(mt).bool())