mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Implement topk with sort for some cases (#68632)
Summary: Benchmark that compares original implementation and the sort implementation (this code should run on a branch without this patch): ```python import torch import timeit def tune_dtype(f): def ret(*args, **kwargs): for dtype in [torch.int8, torch.half, torch.float, torch.double]: f(*args, **kwargs, dtype=dtype) return ret def tune_slice(f): def ret(*args, **kwargs): slice = 1 while slice <= 256: f(*args, **kwargs, slice=slice) slice *= 2 return ret def tune_slice_size(f): def ret(*args, **kwargs): slice_size = 1 while slice_size <= 1_000_000: f(*args, **kwargs, slice_size=slice_size) slice_size *= 10 return ret def tune_k(f): def ret(*args, slice_size, **kwargs): k = 1 while k <= slice_size: f(*args, **kwargs, k=k, slice_size=slice_size) k *= 10 return ret def topk_with_sort(tensor, k, dim=-1, largest=True): values, indices = tensor.sort(dim=dim, descending=largest) return values.narrow(dim, 0, k), indices.narrow(dim, 0, k) def run50sync(f): for _ in range(50): f() torch.cuda.synchronize() def warmup(): N = 1000000 for i in range(1, N // 10000): torch.randn(i, device='cuda') def benchmark_one(slice, slice_size, k, dtype): input_ = torch.empty((slice, slice_size), dtype=dtype, device="cuda").random_() torch.cuda.synchronize() time = timeit.timeit(lambda: run50sync(lambda: torch.topk(input_, k, dim=1)), number=1) torch.cuda.synchronize() time_sort = timeit.timeit(lambda: run50sync(lambda: topk_with_sort(input_, k, dim=1)), number=1) method = "orig" if time < time_sort else "sort" speedup = time / time_sort print(f"(dtype={dtype}, slice={slice}, slice_size={slice_size}, k={k}) -> (method={method}, speedup={speedup})") if __name__ == "__main__": warmup() tune_dtype(tune_slice(tune_slice_size(tune_k(benchmark_one))))() ``` Benchmark result see next comment. Pull Request resolved: https://github.com/pytorch/pytorch/pull/68632 Reviewed By: dagitses Differential Revision: D32566233 Pulled By: ngimel fbshipit-source-id: f7a508176ef3685b491048c4a6562121c60b8b2a
This commit is contained in:
committed by
Facebook GitHub Bot
parent
e554d8b89c
commit
95f4cd0ba9
@ -7,6 +7,28 @@
|
||||
namespace at {
|
||||
namespace native {
|
||||
|
||||
void topk_out_with_sort(
|
||||
const Tensor& self,
|
||||
int64_t k, int64_t dim, bool largest,
|
||||
const Tensor& values,
|
||||
const Tensor& indices
|
||||
) {
|
||||
Tensor sorted_values, sorted_indices;
|
||||
std::tie(sorted_values, sorted_indices) = at::native::sort_cuda(self, dim, largest);
|
||||
values.copy_(sorted_values.narrow(dim, 0, k));
|
||||
indices.copy_(sorted_indices.narrow(dim, 0, k));
|
||||
}
|
||||
|
||||
bool should_use_sort(const Tensor& self, int64_t dim) {
|
||||
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/68632
|
||||
if (self.dim() == 0) return false;
|
||||
if (self.dtype() == kBool) return false; // Bool is not support by topk
|
||||
int64_t slice_size = self.size(dim);
|
||||
if (slice_size == 0) return false;
|
||||
int64_t num_slices = self.numel() / slice_size;
|
||||
return num_slices <= 16 && slice_size >= 100000;
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(topk_out_cuda)
|
||||
(const Tensor& self,
|
||||
int64_t k, int64_t dim, bool largest, bool sorted,
|
||||
@ -14,8 +36,14 @@ TORCH_IMPL_FUNC(topk_out_cuda)
|
||||
const Tensor& indices) {
|
||||
TensorArg topK_arg{values, "topK", 1}, indices_arg{indices, "indices", 2}, input_arg{self, "self", 3};
|
||||
checkAllSameGPU(__func__, {topK_arg, indices_arg, input_arg});
|
||||
|
||||
dim = at::maybe_wrap_dim(dim, self);
|
||||
|
||||
if (should_use_sort(self, dim)) {
|
||||
topk_out_with_sort(self, k, dim, largest, values, indices);
|
||||
return;
|
||||
}
|
||||
|
||||
// If k is 0 the result is an empty tensor, so we don't need to launch a kernel.
|
||||
if (k == 0) {
|
||||
return;
|
||||
|
@ -370,6 +370,11 @@ class TestSortAndSelect(TestCase):
|
||||
k = random.randint(1, testTensor.size(dim))
|
||||
compare(testTensor, k, dim, dir)
|
||||
|
||||
# This tests the code path where on CUDA, topk is implemented with sort.
|
||||
t = torch.randn((2, 100000), device=device)
|
||||
compare(t, 2000, 1, True)
|
||||
compare(t, 2000, 1, False)
|
||||
|
||||
def test_topk_arguments(self, device):
|
||||
q = torch.randn(10, 2, 10, device=device)
|
||||
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
|
||||
|
Reference in New Issue
Block a user