Add Lowering for FlexAttention Backwards (#125515)

# Summary
#### What does this PR do?
It enables Inductor to actually generate the fused flex attention kernel for the backwards

I did some other things along the way:
- Abstract out the 'build_subgraph_buffer' subroutine and make it reusable between flex attention and flex_attention backwards. In total we need too build 3 subgraphs for fwd + bwd. 1 for the fwd graph and then 2 in the bwd. The FAv2 algorithm recomputes the parts of the forward (more efficiently since we already have the row_max via logsumexp), therefore we need to inline both the fwd graph and the joint graph in the bwds kernel.
- The version of the backwards kernel is from a somewhat older version of the triton tutorial implementation. I think that we should update in a follow up to a newer version. Notably the blocks need to be square for this to work as currently implemented. I am sure there are many opportunities for optimization.
- I didnt correctly register the decomp table + IndexMode when I landed: https://github.com/pytorch/pytorch/pull/123902, this remedies that.
- The rel_bias helper func was reversed in terms of causality. I updated and then add a test specific for "future causal" attention.
- This PRs but the main point that I think still needs to be worked out is the store_output call. I have it hacked up to be 'fake' but I dont think we want to land that and likely want to just have a mutated 'dq' and a stored_output 'dk'
- I also needed to update the `TritonTemplateKernel` to actually accept multiple subgraphs (modifications)
- I updated the benchmark to also profile bwds performance

### Benchmark Numbers:
_The current implementation is not parallelizing over ctx length in the bwd_
FWD Speedups

| Type    |   Speedup | shape              | score_mod   | dtype          |
|---------|-----------|--------------------|-------------|----------------|
| Average |     0.991 |                    |             |                |
| Max     |     1.182 | (16, 16, 4096, 64) | noop        | torch.bfloat16 |
| Min     |     0.796 | (2, 16, 512, 256)  | head_bias   | torch.bfloat16 |

BWD Speedups

| Type    |   Speedup | shape              | score_mod   | dtype          |
|---------|-----------|--------------------|-------------|----------------|
| Average |     0.291 |                    |             |                |
| Max     |     0.652 | (8, 16, 512, 64)   | head_bias   | torch.bfloat16 |
| Min     |     0.073 | (2, 16, 4096, 128) | head_bias   | torch.bfloat16 |

<details>

<summary>Full Data</summary>

| shape               | score_mod     | dtype          |   fwd_eager_time |   fwd_compiled_time |   bwd_eager_time |   bwd_compiled_time |   fwd_speedup |   bwd_speedup |
|---------------------|---------------|----------------|------------------|---------------------|------------------|---------------------|---------------|---------------|
| (2, 16, 512, 64)    | noop          | torch.bfloat16 |           19.936 |              19.092 |           57.851 |             193.564 |         1.044 |         0.299 |
| (2, 16, 512, 64)    | causal_mask   | torch.bfloat16 |           19.955 |              19.497 |           57.662 |             206.278 |         1.024 |         0.280 |
| (2, 16, 512, 64)    | relative_bias | torch.bfloat16 |           19.455 |              21.297 |           57.674 |             195.219 |         0.913 |         0.295 |
| (2, 16, 512, 64)    | head_bias     | torch.bfloat16 |           19.958 |              21.289 |           57.674 |             193.859 |         0.938 |         0.298 |
| (2, 16, 512, 128)   | noop          | torch.bfloat16 |           28.157 |              28.615 |           82.831 |             454.211 |         0.984 |         0.182 |
| (2, 16, 512, 128)   | causal_mask   | torch.bfloat16 |           28.154 |              28.444 |           83.091 |             432.083 |         0.990 |         0.192 |
| (2, 16, 512, 128)   | relative_bias | torch.bfloat16 |           28.722 |              27.897 |           83.175 |             446.789 |         1.030 |         0.186 |
| (2, 16, 512, 128)   | head_bias     | torch.bfloat16 |           28.299 |              27.673 |           83.052 |             459.179 |         1.023 |         0.181 |
| (2, 16, 512, 256)   | noop          | torch.bfloat16 |           41.167 |              50.504 |          175.019 |            1083.545 |         0.815 |         0.162 |
| (2, 16, 512, 256)   | causal_mask   | torch.bfloat16 |           41.656 |              51.933 |          175.078 |            1171.176 |         0.802 |         0.149 |
| (2, 16, 512, 256)   | relative_bias | torch.bfloat16 |           41.697 |              50.722 |          175.159 |            1097.312 |         0.822 |         0.160 |
| (2, 16, 512, 256)   | head_bias     | torch.bfloat16 |           41.690 |              52.387 |          175.184 |            1097.336 |         0.796 |         0.160 |
| (2, 16, 1024, 64)   | noop          | torch.bfloat16 |           39.232 |              37.454 |          127.847 |             612.430 |         1.047 |         0.209 |
| (2, 16, 1024, 64)   | causal_mask   | torch.bfloat16 |           39.930 |              39.599 |          127.755 |             665.359 |         1.008 |         0.192 |
| (2, 16, 1024, 64)   | relative_bias | torch.bfloat16 |           39.417 |              41.304 |          127.902 |             614.990 |         0.954 |         0.208 |
| (2, 16, 1024, 64)   | head_bias     | torch.bfloat16 |           39.965 |              42.034 |          127.953 |             613.273 |         0.951 |         0.209 |
| (2, 16, 1024, 128)  | noop          | torch.bfloat16 |           63.964 |              71.024 |          226.510 |            1637.669 |         0.901 |         0.138 |
| (2, 16, 1024, 128)  | causal_mask   | torch.bfloat16 |           63.843 |              72.451 |          226.750 |            1558.949 |         0.881 |         0.145 |
| (2, 16, 1024, 128)  | relative_bias | torch.bfloat16 |           64.301 |              70.487 |          226.651 |            1610.063 |         0.912 |         0.141 |
| (2, 16, 1024, 128)  | head_bias     | torch.bfloat16 |           64.033 |              71.394 |          226.676 |            1668.511 |         0.897 |         0.136 |
| (2, 16, 1024, 256)  | noop          | torch.bfloat16 |          129.348 |             141.390 |          507.337 |            4405.175 |         0.915 |         0.115 |
| (2, 16, 1024, 256)  | causal_mask   | torch.bfloat16 |          129.538 |             145.680 |          507.178 |            4768.874 |         0.889 |         0.106 |
| (2, 16, 1024, 256)  | relative_bias | torch.bfloat16 |          129.438 |             142.782 |          507.004 |            4401.002 |         0.907 |         0.115 |
| (2, 16, 1024, 256)  | head_bias     | torch.bfloat16 |          129.058 |             146.242 |          507.547 |            4434.251 |         0.883 |         0.114 |
| (2, 16, 4096, 64)   | noop          | torch.bfloat16 |          481.606 |             409.120 |         1440.890 |           14147.269 |         1.177 |         0.102 |
| (2, 16, 4096, 64)   | causal_mask   | torch.bfloat16 |          480.227 |             438.847 |         1434.419 |           14973.386 |         1.094 |         0.096 |
| (2, 16, 4096, 64)   | relative_bias | torch.bfloat16 |          480.831 |             458.104 |         1432.935 |           14193.253 |         1.050 |         0.101 |
| (2, 16, 4096, 64)   | head_bias     | torch.bfloat16 |          480.749 |             452.497 |         1437.040 |           14084.869 |         1.062 |         0.102 |
| (2, 16, 4096, 128)  | noop          | torch.bfloat16 |          872.534 |             848.275 |         2600.895 |           35156.849 |         1.029 |         0.074 |
| (2, 16, 4096, 128)  | causal_mask   | torch.bfloat16 |          872.647 |             868.279 |         2587.581 |           31919.531 |         1.005 |         0.081 |
| (2, 16, 4096, 128)  | relative_bias | torch.bfloat16 |          871.484 |             827.644 |         2593.989 |           34805.634 |         1.053 |         0.075 |
| (2, 16, 4096, 128)  | head_bias     | torch.bfloat16 |          871.422 |             856.437 |         2602.482 |           35708.591 |         1.017 |         0.073 |
| (2, 16, 4096, 256)  | noop          | torch.bfloat16 |         1904.497 |            1758.183 |         6122.416 |           66754.593 |         1.083 |         0.092 |
| (2, 16, 4096, 256)  | causal_mask   | torch.bfloat16 |         1911.174 |            1762.821 |         6113.207 |           72759.392 |         1.084 |         0.084 |
| (2, 16, 4096, 256)  | relative_bias | torch.bfloat16 |         1911.254 |            1727.108 |         6123.530 |           66577.988 |         1.107 |         0.092 |
| (2, 16, 4096, 256)  | head_bias     | torch.bfloat16 |         1916.977 |            1801.804 |         6118.158 |           67359.680 |         1.064 |         0.091 |
| (8, 16, 512, 64)    | noop          | torch.bfloat16 |           44.984 |              43.974 |          170.276 |             262.259 |         1.023 |         0.649 |
| (8, 16, 512, 64)    | causal_mask   | torch.bfloat16 |           45.001 |              46.265 |          170.509 |             274.893 |         0.973 |         0.620 |
| (8, 16, 512, 64)    | relative_bias | torch.bfloat16 |           45.466 |              48.211 |          170.606 |             262.759 |         0.943 |         0.649 |
| (8, 16, 512, 64)    | head_bias     | torch.bfloat16 |           45.481 |              48.435 |          170.267 |             261.265 |         0.939 |         0.652 |
| (8, 16, 512, 128)   | noop          | torch.bfloat16 |           72.565 |              74.736 |          313.220 |             773.126 |         0.971 |         0.405 |
| (8, 16, 512, 128)   | causal_mask   | torch.bfloat16 |           72.015 |              75.755 |          313.311 |             775.513 |         0.951 |         0.404 |
| (8, 16, 512, 128)   | relative_bias | torch.bfloat16 |           72.105 |              74.189 |          313.806 |             769.238 |         0.972 |         0.408 |
| (8, 16, 512, 128)   | head_bias     | torch.bfloat16 |           72.005 |              74.364 |          313.509 |             775.237 |         0.968 |         0.404 |
| (8, 16, 512, 256)   | noop          | torch.bfloat16 |          138.656 |             165.453 |          663.707 |            2672.067 |         0.838 |         0.248 |
| (8, 16, 512, 256)   | causal_mask   | torch.bfloat16 |          139.096 |             172.613 |          663.593 |            2926.538 |         0.806 |         0.227 |
| (8, 16, 512, 256)   | relative_bias | torch.bfloat16 |          139.500 |             168.417 |          663.938 |            2658.629 |         0.828 |         0.250 |
| (8, 16, 512, 256)   | head_bias     | torch.bfloat16 |          139.776 |             173.549 |          662.920 |            2667.266 |         0.805 |         0.249 |
| (8, 16, 1024, 64)   | noop          | torch.bfloat16 |          134.883 |             125.004 |          484.706 |            1195.254 |         1.079 |         0.406 |
| (8, 16, 1024, 64)   | causal_mask   | torch.bfloat16 |          134.297 |             132.875 |          485.420 |            1234.953 |         1.011 |         0.393 |
| (8, 16, 1024, 64)   | relative_bias | torch.bfloat16 |          134.839 |             139.231 |          485.470 |            1198.556 |         0.968 |         0.405 |
| (8, 16, 1024, 64)   | head_bias     | torch.bfloat16 |          133.822 |             136.449 |          485.608 |            1189.198 |         0.981 |         0.408 |
| (8, 16, 1024, 128)  | noop          | torch.bfloat16 |          235.470 |             234.765 |          886.094 |            2662.944 |         1.003 |         0.333 |
| (8, 16, 1024, 128)  | causal_mask   | torch.bfloat16 |          236.305 |             241.382 |          886.293 |            2646.984 |         0.979 |         0.335 |
| (8, 16, 1024, 128)  | relative_bias | torch.bfloat16 |          236.414 |             233.980 |          885.250 |            2642.178 |         1.010 |         0.335 |
| (8, 16, 1024, 128)  | head_bias     | torch.bfloat16 |          237.176 |             239.040 |          885.754 |            2665.242 |         0.992 |         0.332 |
| (8, 16, 1024, 256)  | noop          | torch.bfloat16 |          504.445 |             517.855 |         1978.956 |            9592.906 |         0.974 |         0.206 |
| (8, 16, 1024, 256)  | causal_mask   | torch.bfloat16 |          502.428 |             536.002 |         1978.611 |           10607.342 |         0.937 |         0.187 |
| (8, 16, 1024, 256)  | relative_bias | torch.bfloat16 |          503.396 |             523.960 |         1977.993 |            9539.284 |         0.961 |         0.207 |
| (8, 16, 1024, 256)  | head_bias     | torch.bfloat16 |          503.818 |             536.014 |         1980.131 |            9576.262 |         0.940 |         0.207 |
| (8, 16, 4096, 64)   | noop          | torch.bfloat16 |         1970.139 |            1674.930 |         5750.940 |           16724.134 |         1.176 |         0.344 |
| (8, 16, 4096, 64)   | causal_mask   | torch.bfloat16 |         1959.036 |            1775.056 |         5780.512 |           17390.350 |         1.104 |         0.332 |
| (8, 16, 4096, 64)   | relative_bias | torch.bfloat16 |         1947.198 |            1773.869 |         5780.643 |           16779.699 |         1.098 |         0.345 |
| (8, 16, 4096, 64)   | head_bias     | torch.bfloat16 |         1963.935 |            1829.502 |         5780.018 |           16703.259 |         1.073 |         0.346 |
| (8, 16, 4096, 128)  | noop          | torch.bfloat16 |         3582.711 |            3362.623 |        10436.069 |           36415.565 |         1.065 |         0.287 |
| (8, 16, 4096, 128)  | causal_mask   | torch.bfloat16 |         3581.504 |            3499.472 |        10346.869 |           36164.959 |         1.023 |         0.286 |
| (8, 16, 4096, 128)  | relative_bias | torch.bfloat16 |         3589.779 |            3337.849 |        10529.621 |           36261.696 |         1.075 |         0.290 |
| (8, 16, 4096, 128)  | head_bias     | torch.bfloat16 |         3602.265 |            3436.444 |        10458.660 |           36507.790 |         1.048 |         0.286 |
| (8, 16, 4096, 256)  | noop          | torch.bfloat16 |         7695.923 |            7126.275 |        24643.009 |          140949.081 |         1.080 |         0.175 |
| (8, 16, 4096, 256)  | causal_mask   | torch.bfloat16 |         7679.939 |            7186.252 |        24538.105 |          157156.067 |         1.069 |         0.156 |
| (8, 16, 4096, 256)  | relative_bias | torch.bfloat16 |         7681.374 |            6994.832 |        24549.713 |          140077.179 |         1.098 |         0.175 |
| (8, 16, 4096, 256)  | head_bias     | torch.bfloat16 |         7679.822 |            7212.278 |        24627.823 |          140675.003 |         1.065 |         0.175 |
| (16, 16, 512, 64)   | noop          | torch.bfloat16 |           80.126 |              78.291 |          333.719 |             541.165 |         1.023 |         0.617 |
| (16, 16, 512, 64)   | causal_mask   | torch.bfloat16 |           80.065 |              81.696 |          333.779 |             551.113 |         0.980 |         0.606 |
| (16, 16, 512, 64)   | relative_bias | torch.bfloat16 |           80.138 |              86.715 |          333.364 |             542.118 |         0.924 |         0.615 |
| (16, 16, 512, 64)   | head_bias     | torch.bfloat16 |           80.415 |              85.204 |          333.294 |             536.840 |         0.944 |         0.621 |
| (16, 16, 512, 128)  | noop          | torch.bfloat16 |          134.964 |             138.025 |          607.093 |            1333.102 |         0.978 |         0.455 |
| (16, 16, 512, 128)  | causal_mask   | torch.bfloat16 |          134.192 |             141.523 |          606.269 |            1424.318 |         0.948 |         0.426 |
| (16, 16, 512, 128)  | relative_bias | torch.bfloat16 |          135.711 |             138.639 |          606.283 |            1327.974 |         0.979 |         0.457 |
| (16, 16, 512, 128)  | head_bias     | torch.bfloat16 |          135.552 |             140.555 |          607.107 |            1347.370 |         0.964 |         0.451 |
| (16, 16, 512, 256)  | noop          | torch.bfloat16 |          275.113 |             315.144 |         1301.583 |            5268.153 |         0.873 |         0.247 |
| (16, 16, 512, 256)  | causal_mask   | torch.bfloat16 |          274.867 |             328.106 |         1302.513 |            5770.594 |         0.838 |         0.226 |
| (16, 16, 512, 256)  | relative_bias | torch.bfloat16 |          276.052 |             321.770 |         1302.904 |            5241.920 |         0.858 |         0.249 |
| (16, 16, 512, 256)  | head_bias     | torch.bfloat16 |          271.409 |             328.839 |         1302.142 |            5266.037 |         0.825 |         0.247 |
| (16, 16, 1024, 64)  | noop          | torch.bfloat16 |          260.489 |             237.463 |          955.884 |            1817.558 |         1.097 |         0.526 |
| (16, 16, 1024, 64)  | causal_mask   | torch.bfloat16 |          262.378 |             254.350 |          955.280 |            1843.807 |         1.032 |         0.518 |
| (16, 16, 1024, 64)  | relative_bias | torch.bfloat16 |          261.338 |             268.253 |          956.038 |            1820.036 |         0.974 |         0.525 |
| (16, 16, 1024, 64)  | head_bias     | torch.bfloat16 |          262.153 |             264.156 |          956.023 |            1810.076 |         0.992 |         0.528 |
| (16, 16, 1024, 128) | noop          | torch.bfloat16 |          476.475 |             461.413 |         1760.578 |            4306.521 |         1.033 |         0.409 |
| (16, 16, 1024, 128) | causal_mask   | torch.bfloat16 |          473.794 |             479.178 |         1761.277 |            4619.439 |         0.989 |         0.381 |
| (16, 16, 1024, 128) | relative_bias | torch.bfloat16 |          473.839 |             463.282 |         1758.692 |            4290.562 |         1.023 |         0.410 |
| (16, 16, 1024, 128) | head_bias     | torch.bfloat16 |          472.979 |             472.896 |         1763.086 |            4367.931 |         1.000 |         0.404 |
| (16, 16, 1024, 256) | noop          | torch.bfloat16 |         1014.184 |            1026.764 |         3922.997 |           19104.147 |         0.988 |         0.205 |
| (16, 16, 1024, 256) | causal_mask   | torch.bfloat16 |         1013.217 |            1039.046 |         3928.382 |           21086.281 |         0.975 |         0.186 |
| (16, 16, 1024, 256) | relative_bias | torch.bfloat16 |         1008.519 |            1015.278 |         3922.133 |           18980.652 |         0.993 |         0.207 |
| (16, 16, 1024, 256) | head_bias     | torch.bfloat16 |         1011.360 |            1047.542 |         3931.245 |           19069.172 |         0.965 |         0.206 |
| (16, 16, 4096, 64)  | noop          | torch.bfloat16 |         3929.850 |            3325.667 |        11411.704 |           23344.280 |         1.182 |         0.489 |
| (16, 16, 4096, 64)  | causal_mask   | torch.bfloat16 |         3885.262 |            3581.544 |        11390.515 |           23725.639 |         1.085 |         0.480 |
| (16, 16, 4096, 64)  | relative_bias | torch.bfloat16 |         3865.737 |            3537.308 |        11489.901 |           23406.330 |         1.093 |         0.491 |
| (16, 16, 4096, 64)  | head_bias     | torch.bfloat16 |         3880.530 |            3665.249 |        11484.411 |           23299.496 |         1.059 |         0.493 |
| (16, 16, 4096, 128) | noop          | torch.bfloat16 |         7030.306 |            6745.715 |        20621.264 |           57464.096 |         1.042 |         0.359 |
| (16, 16, 4096, 128) | causal_mask   | torch.bfloat16 |         7095.414 |            7034.385 |        20410.656 |           61660.511 |         1.009 |         0.331 |
| (16, 16, 4096, 128) | relative_bias | torch.bfloat16 |         7084.779 |            6686.497 |        20315.161 |           57243.969 |         1.060 |         0.355 |
| (16, 16, 4096, 128) | head_bias     | torch.bfloat16 |         7075.367 |            6863.305 |        20494.385 |           58481.953 |         1.031 |         0.350 |
| (16, 16, 4096, 256) | noop          | torch.bfloat16 |        15612.741 |           14297.482 |        55306.847 |          281161.865 |         1.092 |         0.197 |
| (16, 16, 4096, 256) | causal_mask   | torch.bfloat16 |        15326.592 |           14263.878 |        55227.806 |          313063.232 |         1.075 |         0.176 |
| (16, 16, 4096, 256) | relative_bias | torch.bfloat16 |        15297.963 |           14007.379 |        54558.029 |          279529.175 |         1.092 |         0.195 |
| (16, 16, 4096, 256) | head_bias     | torch.bfloat16 |        15216.160 |           14276.027 |        55081.581 |          280996.826 |         1.066 |         0.196 |

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125515
Approved by: https://github.com/Chillee
This commit is contained in:
drisspg
2024-05-16 03:14:22 +00:00
committed by PyTorch MergeBot
parent ae6fdfa539
commit 95b9e981c3
9 changed files with 828 additions and 309 deletions

View File

@ -3,7 +3,7 @@ import itertools
from collections import defaultdict
from dataclasses import asdict, dataclass
from functools import partial
from typing import Callable, List
from typing import Callable, List, Optional, Tuple
import numpy as np
import torch
@ -29,28 +29,32 @@ def benchmark_torch_function_in_microseconds(func: Callable, *args, **kwargs) ->
@dataclass(frozen=True)
class ExperimentConfig:
batch_size: int
num_heads: int
q_seq_len: int
k_seq_len: int
head_dim: int
shape: Tuple[int]
score_mod: Callable
dtype: torch.dtype
calculate_bwd_time: bool
def __post_init__(self):
assert len(self.shape) == 4, "Shape must be of length 4"
def asdict(self):
return asdict(self)
# Convert the dataclass instance to a dictionary
d = asdict(self)
# Remove the 'calculate_bwd_time' key
d.pop("calculate_bwd_time", None)
return d
@dataclass(frozen=True)
class Times:
eager_time: float
compiled_time: float
@dataclass(frozen=True)
class ExperimentResults:
eager_time: float
compiled_time: float
def get_entries(self) -> List:
return [
f"{self.eager_time:2f}",
f"{self.compiled_time:2f}",
]
fwd_times: Times
bwd_times: Optional[Times]
@dataclass(frozen=True)
@ -58,29 +62,31 @@ class Experiment:
config: ExperimentConfig
results: ExperimentResults
def get_entries(self) -> List:
return self.config.get_entries() + self.results.get_entries()
def asdict(self):
dict1 = asdict(self.config)
dict1 = self.config.asdict()
dict2 = asdict(self.results)
return {**dict1, **dict2}
def generate_inputs(
batch_size,
num_heads,
q_sequence_length,
kv_sequence_length,
head_dim,
dtype,
device,
batch_size: int,
num_heads: int,
q_sequence_length: int,
kv_sequence_length: int,
head_dim: int,
dtype: torch.dtype,
device: torch.device,
requires_grad: bool,
):
q_shape = (batch_size, q_sequence_length, num_heads * head_dim)
kv_shape = (batch_size, kv_sequence_length, num_heads * head_dim)
make_q = partial(torch.rand, q_shape, device=device, dtype=dtype)
make_kv = partial(torch.rand, kv_shape, device=device, dtype=dtype)
make_q = partial(
torch.rand, q_shape, device=device, dtype=dtype, requires_grad=requires_grad
)
make_kv = partial(
torch.rand, kv_shape, device=device, dtype=dtype, requires_grad=requires_grad
)
query = (
make_q()
.view(batch_size, q_sequence_length, num_heads, head_dim)
@ -101,14 +107,16 @@ def generate_inputs(
def run_single_experiment(config: ExperimentConfig, dynamic=False) -> ExperimentResults:
device = torch.device("cuda")
batch_size, num_heads, q_seq_len, head_dim = config.shape
query, key, value = generate_inputs(
config.batch_size,
config.num_heads,
config.q_seq_len,
config.k_seq_len,
config.head_dim,
batch_size,
num_heads,
q_seq_len,
q_seq_len,
head_dim,
config.dtype,
device,
requires_grad=config.calculate_bwd_time,
)
def eager_sdpa(query, key, value, _):
@ -125,23 +133,47 @@ def run_single_experiment(config: ExperimentConfig, dynamic=False) -> Experiment
compiled_sdpa, query, key, value, score_mod
)
return ExperimentResults(
eager_time=forward_eager_time,
compiled_time=forward_compiled_time,
)
if config.calculate_bwd_time:
out_eager = eager_sdpa(query, key, value, score_mod)
dOut = torch.randn_like(out_eager)
backward_eager_time = benchmark_torch_function_in_microseconds(
out_eager.backward, dOut, retain_graph=True
)
out_compile = compiled_sdpa(query, key, value, score_mod)
dOut = torch.randn_like(out_eager)
backward_compile_time = benchmark_torch_function_in_microseconds(
out_compile.backward, dOut, retain_graph=True
)
return ExperimentResults(
fwd_times=Times(forward_eager_time, forward_compiled_time),
bwd_times=Times(backward_eager_time, backward_compile_time),
)
else:
return ExperimentResults(
fwd_times=Times(forward_eager_time, forward_compiled_time),
bwd_times=None,
)
def calculate_speedup(results: ExperimentResults) -> float:
return results.eager_time / results.compiled_time
def calculate_speedup(results: ExperimentResults, type: str) -> float:
if type == "fwd":
return results.fwd_times.eager_time / results.fwd_times.compiled_time
elif type == "bwd":
assert results.bwd_times is not None
return results.bwd_times.eager_time / results.bwd_times.compiled_time
else:
raise ValueError(f"Invalid type {type}")
def get_func_name(func):
return func.__name__.split("<locals>.")[-1].split(" at ")[0]
def get_average_speedups(results: List[Experiment]):
def get_average_speedups(results: List[Experiment], type: str):
# Calculate speedups
speedups = [calculate_speedup(r.results) for r in results]
speedups = [calculate_speedup(r.results, type) for r in results]
# Find indices of max and min speedups
max_speedup_index = np.argmax(speedups)
@ -177,20 +209,39 @@ def print_results(results: List[Experiment]):
table_data = defaultdict(list)
for experiment in results:
for key, value in experiment.asdict().items():
if key == "eager_time" or key == "compiled_time":
value = float(value)
table_data[key].append(value)
if key == "fwd_times":
for name, time in value.items():
table_data[f"fwd_{name}"].append(float(time))
elif key == "bwd_times":
if experiment.config.calculate_bwd_time:
for name, time in value.items():
table_data[f"bwd_{name}"].append(float(time))
else:
table_data[key].append(value)
# Calculate speedups
speedups = [calculate_speedup(r.results) for r in results]
table_data["speedup"] = speedups
fwd_speedups = [calculate_speedup(r.results, type="fwd") for r in results]
table_data["fwd_speedup"] = fwd_speedups
if results[0].config.calculate_bwd_time:
bwd_speedups = [calculate_speedup(r.results, type="bwd") for r in results]
table_data["bwd_speedup"] = bwd_speedups
table_data["score_mod"] = [get_func_name(func) for func in table_data["score_mod"]]
print(tabulate(table_data, headers="keys", tablefmt="github", floatfmt=".3f"))
average_data = get_average_speedups(results)
print("\n")
print("FWD Speedups".center(125, "="))
print("\n")
average_data = get_average_speedups(results, type="fwd")
print(tabulate(average_data, headers="keys", tablefmt="github", floatfmt=".3f"))
if results[0].config.calculate_bwd_time:
print("\n")
print("BWD Speedups".center(125, "="))
print("\n")
average_data = get_average_speedups(results, type="bwd")
print(tabulate(average_data, headers="keys", tablefmt="github", floatfmt=".3f"))
def generate_score_mods() -> List[Callable]:
def noop(score, b, h, m, n):
@ -208,8 +259,8 @@ def generate_score_mods() -> List[Callable]:
return [noop, causal_mask, relative_bias, head_bias]
def generate_experiment_configs() -> List[ExperimentConfig]:
batch_sizes = [1, 8, 16]
def generate_experiment_configs(calculate_bwd: bool) -> List[ExperimentConfig]:
batch_sizes = [2, 8, 16]
num_heads = [16]
q_kv_seq_lens = [(512, 512), (1024, 1024), (4096, 4096)]
head_dims = [64, 128, 256]
@ -228,41 +279,49 @@ def generate_experiment_configs() -> List[ExperimentConfig]:
) in itertools.product(
batch_sizes, num_heads, q_kv_seq_lens, head_dims, score_mods, dtypes
):
assert q_seq_len == kv_seq_len, "Only equal length inputs supported for now."
all_configs.append(
ExperimentConfig(
batch_size=bsz,
num_heads=n_heads,
q_seq_len=q_seq_len,
k_seq_len=kv_seq_len,
head_dim=head_dim,
shape=(bsz, n_heads, q_seq_len, head_dim),
score_mod=score_mod,
dtype=dtype,
calculate_bwd_time=calculate_bwd,
)
)
return all_configs
def main(dynamic=False):
def main(dynamic: bool, calculate_bwd: bool):
seed = 123
np.random.seed(seed)
torch.manual_seed(seed)
results = []
for config in tqdm(generate_experiment_configs()):
for config in tqdm(generate_experiment_configs(calculate_bwd)):
results.append(
Experiment(config, run_single_experiment(config, dynamic=dynamic))
)
for config in tqdm(generate_experiment_configs(calculate_bwd)):
results.append(Experiment(config, run_single_experiment(config)))
print_results(results)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Set up the argument parser
parser = argparse.ArgumentParser(
description="Run sweep over sizes and score mods for flex attention"
)
parser.add_argument(
"--dynamic",
action="store_true",
help="Runs a dynamic shapes version of compiled flex attention.",
)
parser.add_argument(
"--calculate-bwd", action="store_true", help="Calculate backward pass times"
)
# Parse arguments
args = parser.parse_args()
main(args.dynamic)
main(args.dynamic, args.calculate_bwd)