mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Fix clang-tidy warnings in torch/jit (#146963)
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/146963 Approved by: https://github.com/davidberard98
This commit is contained in:
@ -6,7 +6,7 @@
|
||||
namespace torch::jit::mobile::coreml {
|
||||
|
||||
struct TensorSpec {
|
||||
std::string name = "";
|
||||
std::string name;
|
||||
c10::ScalarType dtype = c10::ScalarType::Float;
|
||||
};
|
||||
|
||||
|
@ -43,7 +43,7 @@ c10::IValue preprocess(
|
||||
// Test that method_compile_spec contains the necessary keys and
|
||||
// Tensor/TensorList input
|
||||
c10::IValue inp;
|
||||
std::string error = "";
|
||||
std::string error;
|
||||
if (!method_compile_spec.contains("forward")) {
|
||||
error = R"(method_compile_spec does not contain the "forward" key.)";
|
||||
} else {
|
||||
|
@ -8,10 +8,7 @@
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
namespace torch {
|
||||
namespace jit {
|
||||
namespace xnnpack {
|
||||
namespace delegate {
|
||||
namespace torch::jit::xnnpack::delegate {
|
||||
|
||||
class XNNCompiler {
|
||||
public:
|
||||
@ -24,7 +21,4 @@ class XNNCompiler {
|
||||
XNNExecutor* executor);
|
||||
};
|
||||
|
||||
} // namespace delegate
|
||||
} // namespace xnnpack
|
||||
} // namespace jit
|
||||
} // namespace torch
|
||||
} // namespace torch::jit::xnnpack::delegate
|
||||
|
@ -8,10 +8,7 @@
|
||||
#include <ATen/core/List.h>
|
||||
#include <torch/csrc/jit/backends/xnnpack/xnnpack_graph_builder.h>
|
||||
|
||||
namespace torch {
|
||||
namespace jit {
|
||||
namespace xnnpack {
|
||||
namespace delegate {
|
||||
namespace torch::jit::xnnpack::delegate {
|
||||
|
||||
// Expected method_compile_spec should look something like this:
|
||||
// {
|
||||
@ -126,7 +123,4 @@ c10::IValue preprocess(
|
||||
constexpr auto backend_name = "xnnpack";
|
||||
static auto pre_reg = backend_preprocess_register(backend_name, preprocess);
|
||||
|
||||
} // namespace delegate
|
||||
} // namespace xnnpack
|
||||
} // namespace jit
|
||||
} // namespace torch
|
||||
} // namespace torch::jit::xnnpack::delegate
|
||||
|
@ -58,12 +58,9 @@ struct TORCH_API KernelSpec {
|
||||
: key_{_key},
|
||||
graph_{_graph},
|
||||
code_{_graph, "<fused code>"},
|
||||
nInputs_{_graph->inputs().size()},
|
||||
nInputs_{_graph->inputs().size()}
|
||||
|
||||
inputBroadcastGroups_{},
|
||||
inputChunks_{},
|
||||
|
||||
kernels_{} {
|
||||
{
|
||||
// No need to iterate over reference since n is pointer
|
||||
for (const auto n : graph_->nodes()) {
|
||||
static_assert(std::is_pointer_v<decltype(n)>, "n must be a pointer");
|
||||
|
@ -88,7 +88,7 @@ struct ParsedLiteral {
|
||||
AttributeKind k = AttributeKind::t;
|
||||
|
||||
int64_t i = 0;
|
||||
std::string s = "";
|
||||
std::string s;
|
||||
double f = 0.0;
|
||||
c10::complex<double> c = c10::complex<double>(0, 0);
|
||||
TypePtr ty;
|
||||
|
@ -11,7 +11,7 @@
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
namespace torch::jit {
|
||||
std::ostream& operator<<(std::ostream& out, Instruction inst);
|
||||
|
||||
namespace mobile {
|
||||
|
||||
void CompilationUnit::register_function(std::unique_ptr<Function> fn) {
|
||||
@ -178,7 +178,7 @@ const std::vector<at::Tensor> Module::parameters() const {
|
||||
// loading of a mobile module. TODO
|
||||
const std::map<std::string, at::Tensor> Module::named_parameters() const {
|
||||
std::map<std::string, at::Tensor> params;
|
||||
const std::string name = "";
|
||||
const std::string name;
|
||||
slot_named_params_recurse(object_, ¶ms, name);
|
||||
return params;
|
||||
}
|
||||
|
@ -31,7 +31,7 @@ std::vector<std::string> splitName(const std::string& name) {
|
||||
|
||||
template <typename Iter>
|
||||
std::string concatName(const Iter& begin, const Iter& end) {
|
||||
std::string combined_name = "";
|
||||
std::string combined_name;
|
||||
for (Iter it = begin; it != end; ++it) {
|
||||
const std::string& sub_name = *it;
|
||||
if (!combined_name.empty()) {
|
||||
|
@ -57,7 +57,7 @@ static void hoistConvPackedParams(
|
||||
|
||||
// create the new name
|
||||
|
||||
std::string suffix = "";
|
||||
std::string suffix;
|
||||
for (const auto& attrName : rootToConvPath) {
|
||||
suffix += attrName + ".";
|
||||
}
|
||||
|
@ -8,14 +8,14 @@ namespace torch::jit {
|
||||
|
||||
namespace {
|
||||
|
||||
const std::string kTopModuleVariableName = "";
|
||||
const std::string kTopModuleVariableName;
|
||||
|
||||
std::string TidyClassNameFromTorchScript(
|
||||
const std::optional<c10::QualifiedName>& class_name) {
|
||||
if (!class_name) {
|
||||
return "UNKNOWN_CLASS";
|
||||
}
|
||||
std::string out = "";
|
||||
std::string out;
|
||||
for (const auto& atom : class_name->atoms()) {
|
||||
bool is_internal_torch_atom = (atom == "__torch__");
|
||||
bool is_mangle_atom = (atom.find("__torch_mangle") != std::string::npos);
|
||||
|
@ -100,7 +100,7 @@ std::vector<IValue> getParamAttributes(
|
||||
auto attr = attrModule.attr(name);
|
||||
Value* paramConst = nullptr;
|
||||
|
||||
std::string fullName("");
|
||||
std::string fullName;
|
||||
for (auto& name : moduleNames) {
|
||||
fullName += name + '.';
|
||||
}
|
||||
|
@ -654,7 +654,7 @@ void InplaceConverter::gatherAttrNameInitialValueMap(
|
||||
auto moduleNames =
|
||||
findSubModuleAttr(n->inputs().at(0), name, attrModule, graph_);
|
||||
|
||||
std::string fullName("");
|
||||
std::string fullName;
|
||||
for (auto& name : moduleNames) {
|
||||
fullName += name + '.';
|
||||
}
|
||||
|
@ -240,7 +240,7 @@ struct CompleteArgumentInfo;
|
||||
|
||||
struct CompleteArgumentSpec {
|
||||
CompleteArgumentSpec(bool with_grad, at::ArrayRef<IValue> inputs)
|
||||
: hash_code(0), ninputs(inputs.size()) {
|
||||
: ninputs(inputs.size()) {
|
||||
int32_t all_dims = 0;
|
||||
const auto num_inputs = inputs.size();
|
||||
for (const auto i : c10::irange(num_inputs)) {
|
||||
@ -325,7 +325,7 @@ struct CompleteArgumentSpec {
|
||||
int64_t* sizes_strides() {
|
||||
return data.data() + ninputs;
|
||||
}
|
||||
size_t hash_code; // precomputed on construction
|
||||
size_t hash_code{0}; // precomputed on construction
|
||||
size_t ninputs;
|
||||
// layout is ninputs of TensorPOD (each 64-bit) followed by their size and
|
||||
// stride info for 3 tensors:
|
||||
|
@ -19,8 +19,6 @@ TORCH_DECLARE_bool(torch_jit_enable_expanded_stacks);
|
||||
|
||||
namespace torch::jit {
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, Instruction inst);
|
||||
|
||||
namespace interpreter {
|
||||
|
||||
template <class Ttarget, class Tsource>
|
||||
@ -62,10 +60,10 @@ struct WithCurrentNode {
|
||||
};
|
||||
|
||||
struct NodeSourceInfo {
|
||||
const char* func_name_;
|
||||
const char* file_name_;
|
||||
size_t line_;
|
||||
NodeSourceInfo() : func_name_(nullptr), file_name_(nullptr), line_(0) {}
|
||||
const char* func_name_{nullptr};
|
||||
const char* file_name_{nullptr};
|
||||
size_t line_{0};
|
||||
NodeSourceInfo() {}
|
||||
};
|
||||
|
||||
struct CodeImpl {
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
namespace torch::jit {
|
||||
|
||||
static thread_local std::string caughtOriginalMsg = "";
|
||||
static thread_local std::string caughtPythonClassName = "";
|
||||
static thread_local std::string caughtOriginalMsg;
|
||||
static thread_local std::string caughtPythonClassName;
|
||||
|
||||
JITException::JITException(
|
||||
const std::string& msg,
|
||||
|
@ -48,9 +48,9 @@ class TORCH_API LockingLogger : public LoggerBase {
|
||||
private:
|
||||
mutable std::mutex m;
|
||||
struct RawCounter {
|
||||
RawCounter() : sum(0), count(0) {}
|
||||
int64_t sum;
|
||||
size_t count;
|
||||
RawCounter() = default;
|
||||
int64_t sum{0};
|
||||
size_t count{0};
|
||||
};
|
||||
std::unordered_map<std::string, RawCounter> raw_counters;
|
||||
std::unordered_map<std::string, AggregationType> agg_types;
|
||||
|
@ -37,7 +37,7 @@ std::string stringSlice(
|
||||
slice_indices_adjust(string.size(), &start_val, &end_val, step);
|
||||
|
||||
int64_t i = start_val;
|
||||
std::string result = "";
|
||||
std::string result;
|
||||
for ([[maybe_unused]] const auto j : c10::irange(num_vals)) {
|
||||
result += string[i];
|
||||
i += step;
|
||||
|
@ -117,8 +117,7 @@ class ScriptModuleDeserializer final {
|
||||
: compilation_unit_(std::move(cu)),
|
||||
reader_(std::move(reader)),
|
||||
code_prefix_("code/"),
|
||||
pickle_dir_prefix_(""),
|
||||
tensor_dir_prefix_(""),
|
||||
|
||||
source_importer_(
|
||||
compilation_unit_,
|
||||
&constants_table_,
|
||||
|
@ -1585,7 +1585,7 @@ struct PythonPrintImpl {
|
||||
} else if (auto enumType = type->cast<EnumType>()) {
|
||||
body_ << "class " << enumType->qualifiedClassName().name() << "(Enum):\n";
|
||||
|
||||
std::string value_wrapper = "";
|
||||
std::string value_wrapper;
|
||||
if (enumType->getValueType() == StringType::get()) {
|
||||
value_wrapper = "\"";
|
||||
}
|
||||
|
@ -73,7 +73,7 @@ class TORCH_API Unpickler {
|
||||
TypeParserT type_parser = defaultTypeParser,
|
||||
std::shared_ptr<DeserializationStorageContext> storage_context = nullptr)
|
||||
: reader_(std::move(reader)),
|
||||
tensor_table_(),
|
||||
|
||||
type_resolver_(std::move(type_resolver)),
|
||||
obj_loader_(std::move(obj_loader)),
|
||||
read_record_(std::move(read_record)),
|
||||
|
@ -35,7 +35,7 @@ struct TORCH_API Bound {
|
||||
bool operator>(const Bound& other) const;
|
||||
bool operator>=(const Bound& other) const;
|
||||
|
||||
void swap() {
|
||||
void swap() noexcept {
|
||||
std::swap(start, end);
|
||||
swapped = !swapped;
|
||||
}
|
||||
|
@ -411,7 +411,7 @@ class TORCH_API BufHandle : public ExprHandle {
|
||||
class TORCH_API VarHandle : public ExprHandle {
|
||||
public:
|
||||
// Creates an empty VarHandle whose base Var is set to nullptr.
|
||||
VarHandle() : ExprHandle() {}
|
||||
VarHandle() = default;
|
||||
|
||||
explicit VarHandle(Dtype dtype) : ExprHandle(Var::make(dtype)) {}
|
||||
|
||||
|
@ -101,7 +101,7 @@ static void printHistory(int index, std::string message) {
|
||||
|
||||
template <typename T>
|
||||
std::string join(std::vector<T> indices, char sep = ',') {
|
||||
std::string s = "";
|
||||
std::string s;
|
||||
for (const auto& index : indices) {
|
||||
s += std::to_string(index) + sep;
|
||||
}
|
||||
@ -111,7 +111,7 @@ std::string join(std::vector<T> indices, char sep = ',') {
|
||||
static std::string join(
|
||||
const std::vector<std::string>& indices,
|
||||
char sep = ',') {
|
||||
std::string s = "";
|
||||
std::string s;
|
||||
for (const auto& index : indices) {
|
||||
s += index + sep;
|
||||
}
|
||||
@ -141,7 +141,7 @@ void loopnestRandomization(int64_t seed, LoopNest& l) {
|
||||
int max_allowed_transformations = 20;
|
||||
int n_transforms = randomization_helper::max_transformations(
|
||||
std::rand() % max_allowed_transformations);
|
||||
std::string message = "";
|
||||
std::string message;
|
||||
// clang-format off
|
||||
// Transformations list:
|
||||
//
|
||||
|
@ -100,8 +100,8 @@ size_t assertFind(
|
||||
std::stringstream ss;
|
||||
ss << "Expected to find ";
|
||||
c10::printQuotedString(ss, sub);
|
||||
ss << " but did not find it" << std::endl;
|
||||
ss << "Searched string:" << std::endl;
|
||||
ss << " but did not find it" << '\n';
|
||||
ss << "Searched string:" << '\n';
|
||||
found_range.highlight(ss);
|
||||
if (extra_msg) {
|
||||
extra_msg(ss);
|
||||
@ -139,8 +139,8 @@ size_t assertFindRegex(
|
||||
std::stringstream ss;
|
||||
ss << "Expected to find regex ";
|
||||
c10::printQuotedString(ss, sub);
|
||||
ss << " but did not find it" << std::endl;
|
||||
ss << "Searched string:" << std::endl;
|
||||
ss << " but did not find it" << '\n';
|
||||
ss << "Searched string:" << '\n';
|
||||
if (extra_msg) {
|
||||
extra_msg(ss);
|
||||
}
|
||||
@ -363,7 +363,7 @@ struct FileCheckImpl {
|
||||
std::stringstream ss;
|
||||
ss << "Expected to find ";
|
||||
c10::printQuotedString(ss, check.search_str_);
|
||||
ss << "highlighted but it is not." << std::endl;
|
||||
ss << "highlighted but it is not." << '\n';
|
||||
error_range.highlight(ss);
|
||||
throw std::runtime_error(ss.str());
|
||||
};
|
||||
|
Reference in New Issue
Block a user