mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
fix type hints for interpolation functions (#157202)
Fixes #129053 Previously interpolate had a bad signature and not correct type hints. This fixes this issue. Pull Request resolved: https://github.com/pytorch/pytorch/pull/157202 Approved by: https://github.com/ezyang, https://github.com/albanD
This commit is contained in:
committed by
PyTorch MergeBot
parent
c515385b0a
commit
8d070187e3
@ -67,5 +67,73 @@ def pad_sequence(
|
||||
padding_value: float = 0.0,
|
||||
padding_side: Literal["left", "right"] = "right",
|
||||
) -> Tensor: ...
|
||||
|
||||
# Upsample functions used by torch.nn.functional.interpolate
|
||||
def upsample_nearest1d(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def upsample_nearest2d(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def upsample_nearest3d(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def _upsample_nearest_exact1d(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def _upsample_nearest_exact2d(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def _upsample_nearest_exact3d(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def upsample_linear1d(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
align_corners: bool,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def _upsample_bilinear2d_aa(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
align_corners: bool,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def upsample_bilinear2d(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
align_corners: bool,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def upsample_trilinear3d(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
align_corners: bool,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def _upsample_bicubic2d_aa(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
align_corners: bool,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def upsample_bicubic2d(
|
||||
input: Tensor,
|
||||
output_size: Sequence[int] | None,
|
||||
align_corners: bool,
|
||||
scale_factors: Sequence[float] | None,
|
||||
) -> Tensor: ...
|
||||
def flatten_dense_tensors(tensors: list[Tensor]) -> Tensor: ...
|
||||
def unflatten_dense_tensors(flat: Tensor, tensors: list[Tensor]) -> list[Tensor]: ...
|
||||
|
@ -396,14 +396,14 @@ def instance_norm(
|
||||
__all__ += ["instance_norm"]
|
||||
|
||||
def interpolate(
|
||||
input: Any,
|
||||
size: Any | None = ...,
|
||||
scale_factor: Any | None = ...,
|
||||
input: Tensor,
|
||||
size: int | Sequence[int] | None = ...,
|
||||
scale_factor: float | Sequence[float] | None = ...,
|
||||
mode: str = ...,
|
||||
align_corners: Any | None = ...,
|
||||
recompute_scale_factor: Any | None = ...,
|
||||
align_corners: bool | None = ...,
|
||||
recompute_scale_factor: bool | None = ...,
|
||||
antialias: bool = ...,
|
||||
): ...
|
||||
) -> Tensor: ...
|
||||
|
||||
__all__ += ["interpolate"]
|
||||
|
||||
|
Reference in New Issue
Block a user