mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[PyTorch Edge] Add backport to export old bytecode models (#56802)
Summary: Add an api to backport a model vn to model vi. It accept an input model (file or buffer) and output a model (file or buffer) with an expected bytecode version. In this change, the input is a model and it can come from a file or buffer. The output is a model and can be either file path or buffer. When backport fails, function return false with a warning message : ``` /Users/chenlai/pytorch/cmake-build-debug/bin/test_jit --gtest_filter=LiteInterpreterTest.BackPortByteCodeModelV4:LiteInterpreterTest/*.BackPortByteCodeModelV4:*/LiteInterpreterTest.BackPortByteCodeModelV4/*:*/LiteInterpreterTest/*.BackPortByteCodeModelV4 --gtest_color=no Testing started at 2:32 PM ... CUDA not available. Disabling CUDA and MultiCUDA tests [W backport.cpp:419] Warning: Backport doesn't support backport to version3 (function _backport_for_mobile_impl) Process finished with exit code 0 ``` ## Test 1. Run both `caffe2/test/cpp/jit/test_lite_interpreter.cpp` and `caffe2/test/mobile/test_bytecode.py`. 2. Run all prod models with backport api. Pull Request resolved: https://github.com/pytorch/pytorch/pull/56802 ghstack-source-id: 128425510 Test Plan: CI Reviewed By: raziel, iseeyuan Differential Revision: D27844651 fbshipit-source-id: 8a803cf6c76433ee0a3049b1a5570585d569f8d6
This commit is contained in:
committed by
Facebook GitHub Bot
parent
e9c3ce30d4
commit
8c04593c0a
@ -1,4 +1,15 @@
|
||||
from torch.jit.mobile import _get_model_bytecode_version
|
||||
import fnmatch
|
||||
import io
|
||||
import shutil
|
||||
import tempfile
|
||||
import torch
|
||||
import torch.utils.show_pickle
|
||||
from torch.utils.mobile_optimizer import optimize_for_mobile
|
||||
from torch.jit.mobile import (
|
||||
_load_for_lite_interpreter,
|
||||
_get_model_bytecode_version,
|
||||
_backport_for_mobile_to_buffer,
|
||||
_backport_for_mobile)
|
||||
from torch.testing._internal.common_utils import TestCase, run_tests
|
||||
from pathlib import Path
|
||||
|
||||
@ -14,17 +25,244 @@ pytorch_test_dri = Path(__file__).resolve().parents[1]
|
||||
# increment = torch.ones([2, 4], dtype=torch.float64)
|
||||
# return self.x + y + increment
|
||||
|
||||
# output_model_path = pathlib.Path(tmpdirname, "script_module_v5.ptl")
|
||||
# output_model_path = Path(tmpdirname, "script_module_v5.ptl")
|
||||
# script_module = torch.jit.script(TestModule(1))
|
||||
# optimized_scripted_module = optimize_for_mobile(script_module)
|
||||
# exported_optimized_scripted_module = optimized_scripted_module._save_for_lite_interpreter(
|
||||
# str(output_model_path))
|
||||
|
||||
SCRIPT_MODULE_V4_BYTECODE_PKL = '''
|
||||
(4,
|
||||
('__torch__.*.TestModule.forward',
|
||||
(('instructions',
|
||||
(('STOREN', 1, 2),
|
||||
('DROPR', 1, 0),
|
||||
('LOADC', 0, 0),
|
||||
('LOADC', 1, 0),
|
||||
('MOVE', 2, 0),
|
||||
('OP', 0, 0),
|
||||
('LOADC', 1, 0),
|
||||
('OP', 1, 0),
|
||||
('RET', 0, 0))),
|
||||
('operators', (('aten::add', 'int'), ('aten::add', 'Scalar'))),
|
||||
('constants',
|
||||
(torch._utils._rebuild_tensor_v2(pers.obj(('storage', torch.DoubleStorage, '0', 'cpu', 8),),
|
||||
0,
|
||||
(2, 4),
|
||||
(4, 1),
|
||||
False,
|
||||
collections.OrderedDict()),
|
||||
1)),
|
||||
('types', ()),
|
||||
('register_size', 2)),
|
||||
(('arguments',
|
||||
((('name', 'self'),
|
||||
('type', '__torch__.*.TestModule'),
|
||||
('default_value', None)),
|
||||
(('name', 'y'), ('type', 'int'), ('default_value', None)))),
|
||||
('returns',
|
||||
((('name', ''), ('type', 'Tensor'), ('default_value', None)),)))))
|
||||
'''
|
||||
|
||||
SCRIPT_MODULE_V5_BYTECODE_PKL = '''
|
||||
(5,
|
||||
('__torch__.*.TestModule.forward',
|
||||
(('instructions',
|
||||
(('STOREN', 1, 2),
|
||||
('DROPR', 1, 0),
|
||||
('LOADC', 0, 0),
|
||||
('LOADC', 1, 0),
|
||||
('MOVE', 2, 0),
|
||||
('OP', 0, 0),
|
||||
('LOADC', 1, 0),
|
||||
('OP', 1, 0),
|
||||
('RET', 0, 0))),
|
||||
('operators', (('aten::add', 'int'), ('aten::add', 'Scalar'))),
|
||||
('constants',
|
||||
(torch._utils._rebuild_tensor_v2(pers.obj(('storage', torch.DoubleStorage, 'constants/0', 'cpu', 8),),
|
||||
0,
|
||||
(2, 4),
|
||||
(4, 1),
|
||||
False,
|
||||
collections.OrderedDict()),
|
||||
1)),
|
||||
('types', ()),
|
||||
('register_size', 2)),
|
||||
(('arguments',
|
||||
((('name', 'self'),
|
||||
('type', '__torch__.*.TestModule'),
|
||||
('default_value', None)),
|
||||
(('name', 'y'), ('type', 'int'), ('default_value', None)))),
|
||||
('returns',
|
||||
((('name', ''), ('type', 'Tensor'), ('default_value', None)),)))))
|
||||
'''
|
||||
|
||||
SCRIPT_MODULE_BYTECODE_PKL = {
|
||||
4: {
|
||||
"bytecode_pkl": SCRIPT_MODULE_V4_BYTECODE_PKL,
|
||||
"model_name": "script_module_v4.ptl"},
|
||||
}
|
||||
|
||||
# The minimum version a model can be backported to
|
||||
# Need to be updated when a bytecode version is completely retired
|
||||
MINIMUM_TO_VERSION = 4
|
||||
|
||||
class testVariousModelVersions(TestCase):
|
||||
def test_get_model_bytecode_version(self):
|
||||
script_module_v4 = pytorch_test_dri / "cpp" / "jit" / "script_module_v4.ptl"
|
||||
version_v4 = _get_model_bytecode_version(script_module_v4)
|
||||
assert(version_v4 == 4)
|
||||
def check_model_version(model_path, expect_version):
|
||||
actual_version = _get_model_bytecode_version(model_path)
|
||||
assert(actual_version == expect_version)
|
||||
for version, model_info in SCRIPT_MODULE_BYTECODE_PKL.items():
|
||||
model_path = pytorch_test_dri / "cpp" / "jit" / model_info["model_name"]
|
||||
check_model_version(model_path, version)
|
||||
|
||||
def test_bytecode_values_for_all_backport_functions(self):
|
||||
# Find the maximum version of the checked in models, start backporting to the minimum support version,
|
||||
# and comparing the bytecode pkl content.
|
||||
# It can't be merged to the test `test_all_backport_functions`, because optimization is dynamic and
|
||||
# the content might change when optimize function changes. This test focuses
|
||||
# on bytecode.pkl content validation. For the content validation, it is not byte to byte check, but
|
||||
# regular expression matching. The wildcard can be used to skip some specific content comparison.
|
||||
maximum_checked_in_model_version = max(SCRIPT_MODULE_BYTECODE_PKL.keys())
|
||||
current_from_version = maximum_checked_in_model_version
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
while current_from_version > MINIMUM_TO_VERSION:
|
||||
# Load model v5 and run forward method
|
||||
model_name = SCRIPT_MODULE_BYTECODE_PKL[current_from_version]["model_name"]
|
||||
input_model_path = pytorch_test_dri / "cpp" / "jit" / model_name
|
||||
|
||||
# A temporary model file will be export to this path, and run through bytecode.pkl
|
||||
# content check.
|
||||
tmp_output_model_path_backport = Path(tmpdirname, "tmp_script_module_backport.ptl")
|
||||
|
||||
current_to_version = current_from_version - 1
|
||||
backport_success = _backport_for_mobile(input_model_path, tmp_output_model_path_backport, current_to_version)
|
||||
assert(backport_success)
|
||||
|
||||
expect_bytecode_pkl = SCRIPT_MODULE_BYTECODE_PKL[current_to_version]["bytecode_pkl"]
|
||||
|
||||
buf = io.StringIO()
|
||||
torch.utils.show_pickle.main(
|
||||
["", tmpdirname + "/" + tmp_output_model_path_backport.name + "@*/bytecode.pkl"],
|
||||
output_stream=buf)
|
||||
output = buf.getvalue()
|
||||
|
||||
acutal_result_clean = "".join(output.split())
|
||||
expect_result_clean = "".join(expect_bytecode_pkl.split())
|
||||
isMatch = fnmatch.fnmatch(acutal_result_clean, expect_result_clean)
|
||||
assert(isMatch)
|
||||
|
||||
current_from_version -= 1
|
||||
shutil.rmtree(tmpdirname)
|
||||
|
||||
def test_all_backport_functions(self):
|
||||
# Backport from the latest bytecode version to the minimum support version
|
||||
# Load, run the backport model, and check version
|
||||
class TestModule(torch.nn.Module):
|
||||
def __init__(self, v):
|
||||
super().__init__()
|
||||
self.x = v
|
||||
|
||||
def forward(self, y: int):
|
||||
increment = torch.ones([2, 4], dtype=torch.float64)
|
||||
return self.x + y + increment
|
||||
|
||||
module_input = 1
|
||||
expected_mobile_module_result = 3 * torch.ones([2, 4], dtype=torch.float64)
|
||||
|
||||
# temporary input model file and output model file will be exported in the temporary folder
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
tmp_input_model_path = Path(tmpdirname, "tmp_script_module.ptl")
|
||||
script_module = torch.jit.script(TestModule(1))
|
||||
optimized_scripted_module = optimize_for_mobile(script_module)
|
||||
exported_optimized_scripted_module = optimized_scripted_module._save_for_lite_interpreter(str(tmp_input_model_path))
|
||||
|
||||
current_from_version = _get_model_bytecode_version(tmp_input_model_path)
|
||||
current_to_version = current_from_version - 1
|
||||
tmp_output_model_path = Path(tmpdirname, "tmp_script_module_backport.ptl")
|
||||
|
||||
while current_to_version >= MINIMUM_TO_VERSION:
|
||||
# Backport the latest model to `to_version` to a tmp file "tmp_script_module_backport"
|
||||
backport_success = _backport_for_mobile(tmp_input_model_path, tmp_output_model_path, current_to_version)
|
||||
assert(backport_success)
|
||||
|
||||
backport_version = _get_model_bytecode_version(tmp_output_model_path)
|
||||
assert(backport_version == current_to_version)
|
||||
|
||||
# Load model and run forward method
|
||||
mobile_module = _load_for_lite_interpreter(str(tmp_input_model_path))
|
||||
mobile_module_result = mobile_module(module_input)
|
||||
torch.testing.assert_allclose(mobile_module_result, expected_mobile_module_result)
|
||||
current_to_version -= 1
|
||||
|
||||
# Check backport failure case
|
||||
backport_success = _backport_for_mobile(tmp_input_model_path, tmp_output_model_path, MINIMUM_TO_VERSION - 1)
|
||||
assert(not backport_success)
|
||||
# need to clean the folder before it closes, otherwise will run into git not clean error
|
||||
shutil.rmtree(tmpdirname)
|
||||
|
||||
# Check just the test_backport_bytecode_from_file_to_file mechanism but not the function implementations
|
||||
def test_backport_bytecode_from_file_to_file(self):
|
||||
maximum_checked_in_model_version = max(SCRIPT_MODULE_BYTECODE_PKL.keys())
|
||||
script_module_v5_path = pytorch_test_dri / "cpp" / "jit" / SCRIPT_MODULE_BYTECODE_PKL[
|
||||
maximum_checked_in_model_version]["model_name"]
|
||||
|
||||
if (maximum_checked_in_model_version > MINIMUM_TO_VERSION):
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
tmp_backport_model_path = Path(tmpdirname, "tmp_script_module_v5_backported_to_v4.ptl")
|
||||
# backport from file
|
||||
success = _backport_for_mobile(
|
||||
script_module_v5_path,
|
||||
tmp_backport_model_path,
|
||||
maximum_checked_in_model_version - 1)
|
||||
assert(success)
|
||||
|
||||
buf = io.StringIO()
|
||||
torch.utils.show_pickle.main(
|
||||
["", tmpdirname + "/" + tmp_backport_model_path.name + "@*/bytecode.pkl"],
|
||||
output_stream=buf)
|
||||
output = buf.getvalue()
|
||||
|
||||
expected_result = SCRIPT_MODULE_V4_BYTECODE_PKL
|
||||
acutal_result_clean = "".join(output.split())
|
||||
expect_result_clean = "".join(expected_result.split())
|
||||
isMatch = fnmatch.fnmatch(acutal_result_clean, expect_result_clean)
|
||||
assert(isMatch)
|
||||
|
||||
# Load model v4 and run forward method
|
||||
mobile_module = _load_for_lite_interpreter(str(tmp_backport_model_path))
|
||||
module_input = 1
|
||||
mobile_module_result = mobile_module(module_input)
|
||||
expected_mobile_module_result = 3 * torch.ones([2, 4], dtype=torch.float64)
|
||||
torch.testing.assert_allclose(mobile_module_result, expected_mobile_module_result)
|
||||
shutil.rmtree(tmpdirname)
|
||||
|
||||
# Check just the _backport_for_mobile_to_buffer mechanism but not the function implementations
|
||||
def test_backport_bytecode_from_file_to_buffer(self):
|
||||
maximum_checked_in_model_version = max(SCRIPT_MODULE_BYTECODE_PKL.keys())
|
||||
script_module_v5_path = pytorch_test_dri / "cpp" / "jit" / SCRIPT_MODULE_BYTECODE_PKL[
|
||||
maximum_checked_in_model_version]["model_name"]
|
||||
|
||||
if (maximum_checked_in_model_version > MINIMUM_TO_VERSION):
|
||||
# Backport model to v4
|
||||
script_module_v4_buffer = _backport_for_mobile_to_buffer(
|
||||
script_module_v5_path, maximum_checked_in_model_version - 1)
|
||||
buf = io.StringIO()
|
||||
|
||||
# Check version of the model v4 from backport
|
||||
bytesio = io.BytesIO(script_module_v4_buffer)
|
||||
backport_version = _get_model_bytecode_version(bytesio)
|
||||
assert(backport_version == maximum_checked_in_model_version - 1)
|
||||
|
||||
# Load model v4 from backport and run forward method
|
||||
bytesio = io.BytesIO(script_module_v4_buffer)
|
||||
mobile_module = _load_for_lite_interpreter(bytesio)
|
||||
module_input = 1
|
||||
mobile_module_result = mobile_module(module_input)
|
||||
expected_mobile_module_result = 3 * torch.ones([2, 4], dtype=torch.float64)
|
||||
torch.testing.assert_allclose(mobile_module_result, expected_mobile_module_result)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run_tests()
|
||||
|
Reference in New Issue
Block a user