Grouped Query Attention (#132689)

### Approach: Using the current function declaration

**Constraint:** Q_Heads % KV_Heads == 0

**Major change:**
- Added a new argument enable_gqa: bool to sdpa function call
- It adds a meaning to the last third dimension.

Sample use cases this would enable:
LLama3

```
# LLama3 8b call to SDPA
query = torch.rand(batch, 32, seq_len_q, D)
key = torch.rand(batch, 8, seq_len_kv, D)
value = torch.rand(batch, 8, seq_len_kv, D)

output = scaled_dot_product_attention(query, key, value, is_causal=True, enable_gqa=True)

# Output Shape
(batch, 32, seq_len_q, D)
```

### Design Choice:

- Check if Query.size(-3) == Key.size(-3) == Value.size(-3) or, Query.size(-3) % Key.size(-3) == 0
- The function adjusts the key and value tensors to match the query tensor's head dimension by using repeat_interleave if their number of heads are not equal, facilitating correct and efficient computation in attention mechanisms.
- By default the enable_gqa flag is set to False, which ensures that regular sdpa functionality remains unchanged.

### Benchmarks:

- **sdpa.py: #130634**
For different batch sizes enable_gqa=True shows a substansial improvement in the run_time of sdpa

 | batch_size | q_num_heads | kv_num_heads | q_seq_len | kv_seq_len | embed_dim | forward_time when enable_gqa=True   |   forward_time when enable_gqa=False    |
| ------------ | ------------- | -------------- | ----------- | ------------ | ----------- | ----------- | ---------------- |
|     1      |     32      |      8       |   2048    |    2048    |   2048    |   100.71  |  119.70  |
|     8      |     32      |      8       |   2048    |    2048    |   2048    |   539.78  |  628.83  |
|     16     |     32      |      8       |   2048    |    2048    |   2048    |   1056.81  |  1225.48  |
|     32      |     32      |      8       |   2048    |    2048    |   2048    |   2099.54  |  2440.45  |

![Screenshot 2024-07-25 at 9 07 40 PM](https://github.com/user-attachments/assets/a3e5f716-c39f-4096-9e6c-82a735e57b7b)

- **TorchTitan: https://github.com/pytorch/torchtitan/pull/458**

Differential Revision: D60772086

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132689
Approved by: https://github.com/drisspg
This commit is contained in:
Apurva Jain
2024-08-07 05:35:36 +00:00
committed by PyTorch MergeBot
parent 527f104a69
commit 8bc5ef563e
19 changed files with 372 additions and 170 deletions

View File

@ -1955,16 +1955,24 @@ Call this whenever a new thread is created in order to propagate values from
at::Tensor const& value,
std::optional<at::Tensor> attn_mask,
double dropout,
bool is_causal) {
bool is_causal,
bool enable_gqa) {
return sdp::sdp_params{
query, key, value, std::move(attn_mask), dropout, is_causal};
query,
key,
value,
std::move(attn_mask),
dropout,
is_causal,
enable_gqa};
}))
.def_readonly("query", &sdp::sdp_params::query)
.def_readonly("key", &sdp::sdp_params::key)
.def_readonly("value", &sdp::sdp_params::value)
.def_readonly("attn_mask", &sdp::sdp_params::attn_mask)
.def_readonly("dropout", &sdp::sdp_params::dropout)
.def_readonly("is_causal", &sdp::sdp_params::is_causal);
.def_readonly("is_causal", &sdp::sdp_params::is_causal)
.def_readonly("enable_gqa", &sdp::sdp_params::enable_gqa);
py::enum_<sdp::SDPBackend>(
py_module,