mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[PT2][fusion] ban fusions with large accumulated reads (#157563)
**Problem:** Fusion can accumulate large amount of reads, which leads to significant increase in peak memory utilization. Imagine we have the following code snippet ``` total = torch.rand(N, N) for _ in range(r): x = torch.rand(N, N) total = total + x ``` The default execution is memory efficient as only two tensors of size N-by-N is in memory at any given time. However, with fusion, the additions are fused into a single operation and the execution becomes something like: ``` x_1 = torch.rand(N, N) x_2 = torch.rand(N, N) ... x_r = torch.rand(N, N) total = x_1 + x_2 + ... + x_r ``` Though this is run-time efficient, in the case of large `N` and/or large `r`, this is not memory efficient. [internal only] see [post](https://fb.workplace.com/groups/1075192433118967/permalink/1703374333634104/) for additional details **Solution:** Our proposed solution is to ban fusions in case where a large amount of reads are accumulated. This is in addition to some existing logics during torch compile. * During lowering (i.e., `ir.py`), the config `realize_acc_reads_threshold`, which is default to be 8, controls _the number of_ buffers can be accumulated for a single operator. However, this is oblivious to the size of the buffers. Hence, we additionally introduce a config `realize_acc_reads_size_threshold` to control _the amount of buffers_ in size that can be accumulated. * During scheduling (i.e., `scheduler.py`), additional fusion will be performed and thus we also need to capture such pattern there. The decisions are implemented under `choices.py`. **Results:** For a small example similar to be one in the test case (but with larger `N` and higher number of loop repeats), the memory snapshot before and after are shown below. Note the snapshot on the right is zoomed out so that the y-axis of the two snapshots match. <img width="1328" alt="image" src="https://github.com/user-attachments/assets/670b5961-8454-4379-ae0f-62d4e7946c64" /> Pull Request resolved: https://github.com/pytorch/pytorch/pull/157563 Approved by: https://github.com/jansel, https://github.com/mlazos
This commit is contained in:
committed by
PyTorch MergeBot
parent
651b4a68f2
commit
8554c8007d
@ -1,4 +1,4 @@
|
||||
add_loop_eager,compile_time_instruction_count,3017000000,0.015
|
||||
add_loop_eager,compile_time_instruction_count,2994000000,0.015
|
||||
|
||||
|
||||
|
||||
@ -6,15 +6,15 @@ add_loop_eager_dynamic,compile_time_instruction_count,4352000000,0.025
|
||||
|
||||
|
||||
|
||||
add_loop_inductor,compile_time_instruction_count,29490000000,0.015
|
||||
add_loop_inductor,compile_time_instruction_count,33260000000,0.015
|
||||
|
||||
|
||||
|
||||
add_loop_inductor_dynamic_gpu,compile_time_instruction_count,38760000000,0.025
|
||||
add_loop_inductor_dynamic_gpu,compile_time_instruction_count,42900000000,0.025
|
||||
|
||||
|
||||
|
||||
add_loop_inductor_gpu,compile_time_instruction_count,26000000000,0.015
|
||||
add_loop_inductor_gpu,compile_time_instruction_count,29880000000,0.015
|
||||
|
||||
|
||||
|
||||
@ -22,51 +22,51 @@ basic_modules_ListOfLinears_eager,compile_time_instruction_count,947600000,0.015
|
||||
|
||||
|
||||
|
||||
basic_modules_ListOfLinears_inductor,compile_time_instruction_count,18490000000,0.015
|
||||
basic_modules_ListOfLinears_inductor,compile_time_instruction_count,17940000000,0.015
|
||||
|
||||
|
||||
|
||||
basic_modules_ListOfLinears_inductor_gpu_force_shape_pad,compile_time_instruction_count,17020000000,0.015
|
||||
basic_modules_ListOfLinears_inductor_gpu_force_shape_pad,compile_time_instruction_count,17210000000,0.015
|
||||
|
||||
|
||||
|
||||
basic_modules_ListOfLinears_inductor_gpu,compile_time_instruction_count,10297683772,0.2
|
||||
basic_modules_ListOfLinears_inductor_gpu,compile_time_instruction_count,10980000000,0.2
|
||||
|
||||
|
||||
|
||||
update_hint_regression,compile_time_instruction_count,1673000000,0.02
|
||||
update_hint_regression,compile_time_instruction_count,1688000000,0.02
|
||||
|
||||
|
||||
|
||||
sum_floordiv_regression,compile_time_instruction_count,986800000,0.015
|
||||
sum_floordiv_regression,compile_time_instruction_count,992700000,0.015
|
||||
|
||||
|
||||
|
||||
symint_sum,compile_time_instruction_count,3166000000,0.015
|
||||
symint_sum,compile_time_instruction_count,3187000000,0.015
|
||||
|
||||
|
||||
|
||||
symint_sum_loop,compile_time_instruction_count,4202000000,0.015
|
||||
symint_sum_loop,compile_time_instruction_count,4225000000,0.015
|
||||
|
||||
|
||||
|
||||
aotdispatcher_inference_nosubclass_cpu,compile_time_instruction_count,2103000000,0.015
|
||||
aotdispatcher_inference_nosubclass_cpu,compile_time_instruction_count,2122000000,0.015
|
||||
|
||||
|
||||
|
||||
aotdispatcher_inference_subclass_cpu,compile_time_instruction_count,6004000000,0.015
|
||||
aotdispatcher_inference_subclass_cpu,compile_time_instruction_count,6040000000,0.015
|
||||
|
||||
|
||||
|
||||
aotdispatcher_partitioner_cpu,compile_time_instruction_count,8783000000,0.015
|
||||
aotdispatcher_partitioner_cpu,compile_time_instruction_count,8894000000,0.015
|
||||
|
||||
|
||||
|
||||
aotdispatcher_partitioner_cpu2,compile_time_instruction_count,1940000000,0.015
|
||||
aotdispatcher_partitioner_cpu2,compile_time_instruction_count,1952000000,0.015
|
||||
|
||||
|
||||
|
||||
aotdispatcher_training_nosubclass_cpu,compile_time_instruction_count,3885000000,0.015
|
||||
aotdispatcher_training_nosubclass_cpu,compile_time_instruction_count,3905000000,0.015
|
||||
|
||||
|
||||
|
||||
@ -74,15 +74,15 @@ aotdispatcher_training_subclass_cpu,compile_time_instruction_count,10470000000,0
|
||||
|
||||
|
||||
|
||||
mm_loop_inductor_gpu,compile_time_instruction_count,4324000000,0.015
|
||||
mm_loop_inductor_gpu,compile_time_instruction_count,4406000000,0.015
|
||||
|
||||
|
||||
|
||||
mm_loop_inductor_dynamic_gpu,compile_time_instruction_count,8116000000,0.015
|
||||
mm_loop_inductor_dynamic_gpu,compile_time_instruction_count,8274000000,0.015
|
||||
|
||||
|
||||
|
||||
basic_NestedModule_eager,compile_time_instruction_count,8152524390,0.015
|
||||
basic_NestedModule_eager,compile_time_instruction_count,8193000000,0.015
|
||||
|
||||
|
||||
|
||||
|
|
@ -9,6 +9,7 @@ from torch._dynamo.utils import same
|
||||
from torch._inductor.test_case import run_tests, TestCase
|
||||
from torch._inductor.utils import run_and_get_code
|
||||
from torch.testing import FileCheck
|
||||
from torch.testing._internal.common_utils import serialTest
|
||||
from torch.testing._internal.inductor_utils import (
|
||||
GPU_TYPE,
|
||||
HAS_GPU,
|
||||
@ -209,6 +210,7 @@ class InplacePaddingTest(TestCase):
|
||||
|
||||
self.assertEqual(num_inplace_padding(), 0)
|
||||
|
||||
@serialTest()
|
||||
@requires_cuda_with_enough_memory(2e10)
|
||||
@inductor_config.patch(force_shape_pad=True)
|
||||
def test_linear_and_cel(self):
|
||||
|
@ -8,6 +8,7 @@ from torch._dynamo.utils import same
|
||||
from torch._inductor import config, memory
|
||||
from torch._inductor.test_case import TestCase
|
||||
from torch._inductor.utils import run_and_get_triton_code
|
||||
from torch.testing._internal.common_utils import serialTest
|
||||
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
|
||||
|
||||
|
||||
@ -306,6 +307,58 @@ class TestOperatorReorderForPeakMemory(TestCase):
|
||||
expected_bound = a.size(0) * c.size(1) * a.dtype.itemsize * 2
|
||||
self.assertLess(peak_mem, expected_bound)
|
||||
|
||||
@serialTest()
|
||||
def test_fusion_acc_large_reads(self):
|
||||
def f(x, y, z):
|
||||
res = torch.zeros_like(x[0])
|
||||
for i in range(4):
|
||||
temp = torch.matmul(x, y) + z
|
||||
res = res + temp
|
||||
return res
|
||||
|
||||
N = 128
|
||||
x = torch.rand(N, N, dtype=torch.float32, device=GPU_TYPE)
|
||||
y = torch.rand(N, N, dtype=torch.float32, device=GPU_TYPE)
|
||||
z = torch.rand(N, N, dtype=torch.float32, device=GPU_TYPE)
|
||||
|
||||
# CASE 1: no restriction on the amount of accumulation
|
||||
with config.patch({"realize_acc_reads_size_threshold": float("inf")}):
|
||||
f_compiled = torch.compile(f)
|
||||
code = run_and_get_triton_code(f_compiled, x, y, z)
|
||||
(
|
||||
FileCheck()
|
||||
.check("triton_poi_fused_add_0.run(buf4, arg2_1, buf1, buf2, buf3")
|
||||
.run(code)
|
||||
)
|
||||
|
||||
# CASE 2: for tensors with the same size as x (which is 4 * N**2 bytes)
|
||||
# at most 12 / 4 = 3 reads can be accumulated during fusion
|
||||
with config.patch({"realize_acc_reads_size_threshold": 12 * N**2}):
|
||||
f_compiled = torch.compile(f)
|
||||
code = run_and_get_triton_code(f_compiled, x, y, z)
|
||||
(
|
||||
FileCheck()
|
||||
.check("triton_poi_fused_add_0.run(buf3, arg2_1, buf1, buf2,")
|
||||
.check("triton_poi_fused_add_1.run(buf5, buf4, arg2_1,")
|
||||
.run(code)
|
||||
)
|
||||
|
||||
# CASE 3: no such fusion allowed
|
||||
with config.patch({"realize_acc_reads_size_threshold": N**2}):
|
||||
f_compiled = torch.compile(f)
|
||||
code = run_and_get_triton_code(f_compiled, x, y, z)
|
||||
(
|
||||
FileCheck()
|
||||
.check("triton_poi_fused_add_0.run(buf1, arg2_1,")
|
||||
.check("triton_poi_fused_add_0.run(buf3, arg2_1,")
|
||||
.check("triton_poi_fused_add_0.run(buf4, buf3,")
|
||||
.check("triton_poi_fused_add_0.run(buf6, arg2_1,")
|
||||
.check("triton_poi_fused_add_0.run(buf7, buf6,")
|
||||
.check("triton_poi_fused_add_0.run(buf9, arg2_1,")
|
||||
.check("triton_poi_fused_add_0.run(buf10, buf9,")
|
||||
.run(code)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from torch._inductor.test_case import run_tests
|
||||
|
@ -13,6 +13,7 @@ from torch.testing._internal.common_utils import (
|
||||
instantiate_parametrized_tests,
|
||||
IS_LINUX,
|
||||
parametrize,
|
||||
serialTest,
|
||||
)
|
||||
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_CUDA
|
||||
|
||||
@ -77,12 +78,17 @@ class TestOnlineSoftmax(TestCase):
|
||||
out, source_codes = run_and_get_code(f, x)
|
||||
return source_codes[0]
|
||||
|
||||
@serialTest()
|
||||
def test_codegen_3pass_softmax_due_to_disable(self):
|
||||
with inductor_config.patch(online_softmax=False):
|
||||
with inductor_config.patch(
|
||||
online_softmax=False,
|
||||
realize_acc_reads_size_threshold=float("inf"),
|
||||
):
|
||||
wrapper_code = self.get_softmax_wrapper()
|
||||
|
||||
self.assertEqual(wrapper_code.count("for r0_offset in"), 3)
|
||||
|
||||
@serialTest()
|
||||
@parametrize("V", [2048, 50304])
|
||||
@parametrize("use_log_softmax", [False, True])
|
||||
def test_codegen_online_softmax(self, use_log_softmax, V):
|
||||
|
@ -365,6 +365,10 @@ class InductorChoices:
|
||||
WhyNoFuse(node1, node2)("Fusion will increase peak memory")
|
||||
return False
|
||||
|
||||
if scheduler.fusion_accumulate_large_reads(node1, node2):
|
||||
WhyNoFuse(node1, node2)("Fusion accumulate large amount of reads")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
|
@ -574,6 +574,7 @@ realize_opcount_threshold = 30
|
||||
|
||||
# Threshold to prevent excessive accumulation of ops in one buffer during lowering
|
||||
realize_acc_reads_threshold = 8
|
||||
realize_acc_reads_size_threshold = 3 * (1024**3)
|
||||
|
||||
# fallback to eager for random/dropout, this is slow but useful for debugging
|
||||
fallback_random = False
|
||||
|
@ -123,6 +123,7 @@ if TYPE_CHECKING:
|
||||
from torch.fx.graph import Graph
|
||||
|
||||
from .codegen.wrapper import PythonWrapperCodegen
|
||||
from .dependencies import Dep
|
||||
from .scheduler import BaseSchedulerNode
|
||||
|
||||
CompiledModule = Union[ModuleType, FileBackedGraphModule]
|
||||
@ -485,6 +486,9 @@ class GraphLowering(torch.fx.Interpreter):
|
||||
|
||||
self.bw_donated_idxs = get_donated_idxs()
|
||||
|
||||
# Cache for dep size hints to avoid expensive recomputation
|
||||
self.dep_size_hint_cache: dict[Dep, int] = {}
|
||||
|
||||
def freeze_runtime_asserts(self) -> None:
|
||||
self._shape_env.freeze_runtime_asserts()
|
||||
|
||||
@ -570,6 +574,23 @@ class GraphLowering(torch.fx.Interpreter):
|
||||
assert isinstance(feature, BackendFeature), feature
|
||||
return feature in self.get_backend_features(get_device_type(device))
|
||||
|
||||
def get_dep_size_hint(self, dep: Dep) -> int:
|
||||
"""
|
||||
Get the size hint for a dependency with caching to avoid expensive recomputation.
|
||||
"""
|
||||
if dep not in self.dep_size_hint_cache:
|
||||
res = 0
|
||||
try:
|
||||
if not dep.has_unbacked_symbols():
|
||||
res = dep.numbytes_hint()
|
||||
except KeyError:
|
||||
# In at least one test (test/inductor/test_torchbind.py) we
|
||||
# create a StarDep that doesn't exist in the graph and calling
|
||||
# `has_unbacked_symbols()` throws an error.
|
||||
pass
|
||||
self.dep_size_hint_cache[dep] = res
|
||||
return self.dep_size_hint_cache[dep]
|
||||
|
||||
def get_current_device_or_throw(self) -> torch.device:
|
||||
if device := self.current_device:
|
||||
return device
|
||||
|
@ -7829,6 +7829,10 @@ class TensorBox(MutableBox):
|
||||
|
||||
|
||||
class StorageBox(MutableBox):
|
||||
"""
|
||||
StorageBox allow in-place mutation of Tensors
|
||||
"""
|
||||
|
||||
def is_input_buffer(self) -> bool:
|
||||
if isinstance(self.data, (InputBuffer, ReinterpretView)):
|
||||
return self.data.get_name() in V.graph.graph_inputs
|
||||
@ -7878,10 +7882,17 @@ class StorageBox(MutableBox):
|
||||
):
|
||||
self.realize()
|
||||
|
||||
def has_accumulated_enough_reads_by_size(self) -> bool:
|
||||
return (
|
||||
sum(V.graph.get_dep_size_hint(dep) for dep in self.get_reads())
|
||||
> config.realize_acc_reads_size_threshold
|
||||
)
|
||||
|
||||
def has_exceeded_max_reads(self) -> bool:
|
||||
return isinstance(self.data, Pointwise) and (
|
||||
self.num_reads() > config.realize_acc_reads_threshold
|
||||
or self.has_large_inner_fn()
|
||||
or self.has_accumulated_enough_reads_by_size()
|
||||
)
|
||||
|
||||
def should_realize_on_reuse(self, users: int) -> bool:
|
||||
|
@ -78,19 +78,8 @@ def get_freeable_input_buf(
|
||||
A dictionary containing all freeble input buffers, keyed by their names.
|
||||
"""
|
||||
|
||||
# this function is copied from torch/_inductor/scheduler.py
|
||||
# TODO: would be nice to remove the try/except block for both places
|
||||
def _dep_size_hint(dep: Dep) -> int:
|
||||
res = 0
|
||||
try:
|
||||
if not dep.has_unbacked_symbols():
|
||||
res = dep.numbytes_hint()
|
||||
except KeyError:
|
||||
# In at least one test (test/inductor/test_torchbind.py) we
|
||||
# create a StarDep that doesn't exist in the graph and calling
|
||||
# `has_unbacked_symbols()` throws an error.
|
||||
pass
|
||||
return res
|
||||
return V.graph.get_dep_size_hint(dep)
|
||||
|
||||
# get freeable input buffers' successor nodes and their sizes
|
||||
# note that different deps can have the same name, so we use name as keys
|
||||
|
@ -2051,15 +2051,12 @@ class Scheduler:
|
||||
optimizations such as fusion, reorder, and graph partition.
|
||||
"""
|
||||
|
||||
__dep_size_hint_cache: dict[Dep, int]
|
||||
|
||||
def __init__(self, nodes: list[ir.Operation]) -> None:
|
||||
with dynamo_timed("Scheduler.__init__"):
|
||||
self._init(nodes)
|
||||
|
||||
def _init(self, nodes: list[ir.Operation]) -> None:
|
||||
super().__init__()
|
||||
self.__dep_size_hint_cache = {}
|
||||
V.graph.scheduler = self
|
||||
self.backends: dict[torch.device, BaseScheduling] = {}
|
||||
self.post_grad_graph_id = next(_post_grad_graph_counter)
|
||||
@ -3505,6 +3502,17 @@ class Scheduler:
|
||||
return True
|
||||
return False
|
||||
|
||||
def fusion_accumulate_large_reads(
|
||||
self, node1: BaseSchedulerNode, node2: BaseSchedulerNode
|
||||
) -> bool:
|
||||
all_reads = (node1.read_writes.reads | node2.read_writes.reads) - (
|
||||
node1.read_writes.writes | node2.read_writes.writes
|
||||
)
|
||||
return (
|
||||
sum(self.dep_size_hint(dep) for dep in all_reads)
|
||||
> config.realize_acc_reads_size_threshold
|
||||
)
|
||||
|
||||
def are_long_distant_nodes(
|
||||
self, node1: BaseSchedulerNode, node2: BaseSchedulerNode
|
||||
) -> bool:
|
||||
@ -4010,20 +4018,7 @@ class Scheduler:
|
||||
return False
|
||||
|
||||
def dep_size_hint(self, dep: Dep) -> int:
|
||||
res = 0
|
||||
if dep not in self.__dep_size_hint_cache:
|
||||
try:
|
||||
if not dep.has_unbacked_symbols():
|
||||
res = dep.numbytes_hint()
|
||||
except KeyError:
|
||||
# In at least one test (test/inductor/test_torchbind.py) we
|
||||
# create a StarDep that doesn't exist in the graph and calling
|
||||
# `has_unbacked_symbols()` throws an error.
|
||||
pass
|
||||
self.__dep_size_hint_cache[dep] = res
|
||||
else:
|
||||
res = self.__dep_size_hint_cache[dep]
|
||||
return res
|
||||
return V.graph.get_dep_size_hint(dep)
|
||||
|
||||
def score_fusion_memory(
|
||||
self, node1: BaseSchedulerNode, node2: BaseSchedulerNode
|
||||
|
Reference in New Issue
Block a user