mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Add unified memory APIs for torch.accelerator (#152932)
# Motivation The following API will be put under torch.accelerator - empty_cache - max_memory_allocated - max_memory_reserved - memory_allocated - memory_reserved - memory_stats - reset_accumulated_memory_stats - reset_peak_memory_stats Pull Request resolved: https://github.com/pytorch/pytorch/pull/152932 Approved by: https://github.com/albanD ghstack dependencies: #138222
This commit is contained in:
committed by
PyTorch MergeBot
parent
d7114f05b1
commit
84f7e88aef
@ -1,5 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <c10/core/CachingDeviceAllocator.h>
|
||||
#include <c10/core/DeviceType.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
|
||||
@ -72,6 +73,27 @@ TORCH_API c10::DeviceIndex exchangeDevice(c10::DeviceIndex device_index);
|
||||
// original device index that was active before the change.
|
||||
TORCH_API c10::DeviceIndex maybeExchangeDevice(c10::DeviceIndex device_index);
|
||||
|
||||
TORCH_API inline void emptyCache() {
|
||||
const auto device_type = getAccelerator(true).value();
|
||||
at::getDeviceAllocator(device_type)->emptyCache();
|
||||
}
|
||||
|
||||
TORCH_API inline at::CachingDeviceAllocator::DeviceStats getDeviceStats(
|
||||
c10::DeviceIndex device_index) {
|
||||
const auto device_type = getAccelerator(true).value();
|
||||
return at::getDeviceAllocator(device_type)->getDeviceStats(device_index);
|
||||
}
|
||||
|
||||
TORCH_API inline void resetAccumulatedStats(c10::DeviceIndex device_index) {
|
||||
const auto device_type = getAccelerator(true).value();
|
||||
at::getDeviceAllocator(device_type)->resetAccumulatedStats(device_index);
|
||||
}
|
||||
|
||||
TORCH_API inline void resetPeakStats(c10::DeviceIndex device_index) {
|
||||
const auto device_type = getAccelerator(true).value();
|
||||
at::getDeviceAllocator(device_type)->resetPeakStats(device_index);
|
||||
}
|
||||
|
||||
} // namespace at::accelerator
|
||||
|
||||
namespace at {
|
||||
|
@ -25,3 +25,26 @@
|
||||
synchronize
|
||||
device_index
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: torch.accelerator.memory
|
||||
```
|
||||
```{eval-rst}
|
||||
.. currentmodule:: torch.accelerator.memory
|
||||
```
|
||||
|
||||
## Memory management
|
||||
```{eval-rst}
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
empty_cache
|
||||
max_memory_allocated
|
||||
max_memory_reserved
|
||||
memory_allocated
|
||||
memory_reserved
|
||||
memory_stats
|
||||
reset_accumulated_memory_stats
|
||||
reset_peak_memory_stats
|
||||
```
|
||||
|
@ -2435,6 +2435,11 @@ def _accelerator_synchronizeDevice(device_index: _int) -> None: ...
|
||||
def _accelerator_exchangeDevice(device_index: _int) -> _int: ...
|
||||
def _accelerator_maybeExchangeDevice(device_index: _int) -> _int: ...
|
||||
def _accelerator_setAllocatorSettings(env: str) -> None: ...
|
||||
def _accelerator_isAllocatorInitialized() -> _bool: ...
|
||||
def _accelerator_emptyCache() -> None: ...
|
||||
def _accelerator_getDeviceStats(device_index: _int) -> dict[str, Any]: ...
|
||||
def _accelerator_resetAccumulatedStats(device_index: _int) -> None: ...
|
||||
def _accelerator_resetPeakStats(device_index: _int) -> None: ...
|
||||
|
||||
# Defined in torch/csrc/jit/python/python_tracer.cpp
|
||||
class TracingState:
|
||||
|
@ -8,6 +8,16 @@ from typing_extensions import deprecated
|
||||
import torch
|
||||
|
||||
from ._utils import _device_t, _get_device_index
|
||||
from .memory import (
|
||||
empty_cache,
|
||||
max_memory_allocated,
|
||||
max_memory_reserved,
|
||||
memory_allocated,
|
||||
memory_reserved,
|
||||
memory_stats,
|
||||
reset_accumulated_memory_stats,
|
||||
reset_peak_memory_stats,
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
@ -15,9 +25,17 @@ __all__ = [
|
||||
"current_device_idx", # deprecated
|
||||
"current_device_index",
|
||||
"current_stream",
|
||||
"empty_cache",
|
||||
"device_count",
|
||||
"device_index",
|
||||
"is_available",
|
||||
"max_memory_allocated",
|
||||
"max_memory_reserved",
|
||||
"memory_allocated",
|
||||
"memory_reserved",
|
||||
"memory_stats",
|
||||
"reset_accumulated_memory_stats",
|
||||
"reset_peak_memory_stats",
|
||||
"set_device_idx", # deprecated
|
||||
"set_device_index",
|
||||
"set_stream",
|
||||
|
201
torch/accelerator/memory.py
Normal file
201
torch/accelerator/memory.py
Normal file
@ -0,0 +1,201 @@
|
||||
from collections import OrderedDict
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
|
||||
from ._utils import _device_t, _get_device_index
|
||||
|
||||
|
||||
__all__ = [
|
||||
"empty_cache",
|
||||
"max_memory_allocated",
|
||||
"max_memory_reserved",
|
||||
"memory_allocated",
|
||||
"memory_reserved",
|
||||
"memory_stats",
|
||||
"reset_accumulated_memory_stats",
|
||||
"reset_peak_memory_stats",
|
||||
]
|
||||
|
||||
|
||||
def empty_cache() -> None:
|
||||
r"""Release all unoccupied cached memory currently held by the caching
|
||||
allocator so that those can be used in other application.
|
||||
|
||||
.. note:: This function is a no-op if the memory allocator for the current
|
||||
:ref:`accelerator <accelerators>` has not been initialized.
|
||||
"""
|
||||
if not torch._C._accelerator_isAllocatorInitialized():
|
||||
return
|
||||
torch._C._accelerator_emptyCache()
|
||||
|
||||
|
||||
def memory_stats(device_index: _device_t = None, /) -> OrderedDict[str, Any]:
|
||||
r"""Return a dictionary of accelerator device memory allocator statistics for a given device index.
|
||||
|
||||
The return value of this function is a dictionary of statistics, each of
|
||||
which is a non-negative integer.
|
||||
|
||||
Core statistics:
|
||||
|
||||
- ``"allocated.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
||||
number of allocation requests received by the memory allocator.
|
||||
- ``"allocated_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
||||
amount of allocated memory.
|
||||
- ``"segment.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
||||
number of reserved segments from device memory allocation.
|
||||
- ``"reserved_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
||||
amount of reserved memory.
|
||||
- ``"active.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
||||
number of active memory blocks.
|
||||
- ``"active_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
||||
amount of active memory.
|
||||
- ``"inactive_split.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
||||
number of inactive, non-releasable memory blocks.
|
||||
- ``"inactive_split_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
||||
amount of inactive, non-releasable memory.
|
||||
|
||||
For these core statistics, values are broken down as follows.
|
||||
|
||||
Pool type:
|
||||
|
||||
- ``all``: combined statistics across all memory pools.
|
||||
- ``large_pool``: statistics for the large allocation pool
|
||||
(as of June 2025, for size >= 1MB allocations).
|
||||
- ``small_pool``: statistics for the small allocation pool
|
||||
(as of June 2025, for size < 1MB allocations).
|
||||
|
||||
Metric type:
|
||||
|
||||
- ``current``: current value of this metric.
|
||||
- ``peak``: maximum value of this metric.
|
||||
- ``allocated``: historical total increase in this metric.
|
||||
- ``freed``: historical total decrease in this metric.
|
||||
|
||||
In addition to the core statistics, we also provide some simple event
|
||||
counters:
|
||||
|
||||
- ``"num_alloc_retries"``: number of failed device memory allocation calls that
|
||||
result in a cache flush and retry.
|
||||
- ``"num_ooms"``: number of out-of-memory errors thrown.
|
||||
- ``"num_sync_all_streams"``: number of ``synchronize_and_free_events`` calls.
|
||||
- ``"num_device_alloc"``: number of device memory allocation calls.
|
||||
- ``"num_device_free"``: number of device memory free calls.
|
||||
|
||||
Args:
|
||||
device_index (:class:`torch.device`, str, int, optional): the index of the device to target.
|
||||
If not given, use :func:`torch.accelerator.current_device_index` by default.
|
||||
If a :class:`torch.device` or str is provided, its type must match the current
|
||||
:ref:`accelerator<accelerators>` device type.
|
||||
"""
|
||||
if not torch._C._accelerator_isAllocatorInitialized():
|
||||
return OrderedDict()
|
||||
device_index = _get_device_index(device_index, optional=True)
|
||||
stats = torch._C._accelerator_getDeviceStats(device_index)
|
||||
flat_stats = []
|
||||
|
||||
def flatten(prefix: str, value: Any) -> None:
|
||||
if isinstance(value, dict):
|
||||
for k, v in value.items():
|
||||
nested_prefix = f"{prefix}.{k}" if prefix else k
|
||||
flatten(nested_prefix, v)
|
||||
else:
|
||||
flat_stats.append((prefix, value))
|
||||
|
||||
flatten("", stats)
|
||||
flat_stats.sort()
|
||||
return OrderedDict(flat_stats)
|
||||
|
||||
|
||||
def memory_allocated(device_index: _device_t = None, /) -> int:
|
||||
r"""Return the current :ref:`accelerator<accelerators>` device memory occupied by tensors
|
||||
in bytes for a given device index.
|
||||
|
||||
Args:
|
||||
device_index (:class:`torch.device`, str, int, optional): the index of the device to target.
|
||||
If not given, use :func:`torch.accelerator.current_device_index` by default.
|
||||
If a :class:`torch.device` or str is provided, its type must match the current
|
||||
:ref:`accelerator<accelerators>` device type.
|
||||
"""
|
||||
return memory_stats(device_index).get("allocated_bytes.all.current", 0)
|
||||
|
||||
|
||||
def max_memory_allocated(device_index: _device_t = None, /) -> int:
|
||||
r"""Return the current :ref:`accelerator<accelerators>` maximum device memory occupied by tensors
|
||||
in bytes for a given device index.
|
||||
|
||||
By default, this returns the peak allocated memory since the beginning of
|
||||
this program. :func:`~torch.accelerator.reset_peak_memory_stats` can be used to
|
||||
reset the starting point in tracking this metric.
|
||||
|
||||
Args:
|
||||
device_index (:class:`torch.device`, str, int, optional): the index of the device to target.
|
||||
If not given, use :func:`torch.accelerator.current_device_index` by default.
|
||||
If a :class:`torch.device` or str is provided, its type must match the current
|
||||
:ref:`accelerator<accelerators>` device type.
|
||||
"""
|
||||
return memory_stats(device_index).get("allocated_bytes.all.peak", 0)
|
||||
|
||||
|
||||
def memory_reserved(device_index: _device_t = None, /) -> int:
|
||||
r"""Return the current :ref:`accelerator<accelerators>` device memory managed by the caching allocator
|
||||
in bytes for a given device index.
|
||||
|
||||
Args:
|
||||
device_index (:class:`torch.device`, str, int, optional): the index of the device to target.
|
||||
If not given, use :func:`torch.accelerator.current_device_index` by default.
|
||||
If a :class:`torch.device` or str is provided, its type must match the current
|
||||
:ref:`accelerator<accelerators>` device type.
|
||||
"""
|
||||
return memory_stats(device_index).get("reserved_bytes.all.current", 0)
|
||||
|
||||
|
||||
def max_memory_reserved(device_index: _device_t = None, /) -> int:
|
||||
r"""Return the current :ref:`accelerator<accelerators>` maximum device memory managed by the caching allocator
|
||||
in bytes for a given device index.
|
||||
|
||||
By default, this returns the peak cached memory since the beginning of this
|
||||
program. :func:`~torch.accelerator.reset_peak_memory_stats` can be used to reset
|
||||
the starting point in tracking this metric.
|
||||
|
||||
Args:
|
||||
device_index (:class:`torch.device`, str, int, optional): the index of the device to target.
|
||||
If not given, use :func:`torch.accelerator.current_device_index` by default.
|
||||
If a :class:`torch.device` or str is provided, its type must match the current
|
||||
:ref:`accelerator<accelerators>` device type.
|
||||
"""
|
||||
return memory_stats(device_index).get("reserved_bytes.all.peak", 0)
|
||||
|
||||
|
||||
def reset_accumulated_memory_stats(device_index: _device_t = None, /) -> None:
|
||||
r"""Reset the "accumulated" (historical) stats tracked by the current :ref:`accelerator<accelerators>`
|
||||
memory allocator for a given device index.
|
||||
|
||||
Args:
|
||||
device_index (:class:`torch.device`, str, int, optional): the index of the device to target.
|
||||
If not given, use :func:`torch.accelerator.current_device_index` by default.
|
||||
If a :class:`torch.device` or str is provided, its type must match the current
|
||||
:ref:`accelerator<accelerators>` device type.
|
||||
|
||||
.. note:: This function is a no-op if the memory allocator for the current
|
||||
:ref:`accelerator <accelerators>` has not been initialized.
|
||||
"""
|
||||
device_index = _get_device_index(device_index, optional=True)
|
||||
return torch._C._accelerator_resetAccumulatedStats(device_index)
|
||||
|
||||
|
||||
def reset_peak_memory_stats(device_index: _device_t = None, /) -> None:
|
||||
r"""Reset the "peak" stats tracked by the current :ref:`accelerator<accelerators>`
|
||||
memory allocator for a given device index.
|
||||
|
||||
Args:
|
||||
device_index (:class:`torch.device`, str, int, optional): the index of the device to target.
|
||||
If not given, use :func:`torch.accelerator.current_device_index` by default.
|
||||
If a :class:`torch.device` or str is provided, its type must match the current
|
||||
:ref:`accelerator<accelerators>` device type.
|
||||
|
||||
.. note:: This function is a no-op if the memory allocator for the current
|
||||
:ref:`accelerator <accelerators>` has not been initialized.
|
||||
"""
|
||||
device_index = _get_device_index(device_index, optional=True)
|
||||
return torch._C._accelerator_resetPeakStats(device_index)
|
@ -77,6 +77,70 @@ void initModule(PyObject* module) {
|
||||
m.def("_accelerator_setAllocatorSettings", [](std::string env) {
|
||||
c10::CachingAllocator::setAllocatorSettings(env);
|
||||
});
|
||||
|
||||
m.def("_accelerator_isAllocatorInitialized", []() {
|
||||
const auto device_type = at::accelerator::getAccelerator(true).value();
|
||||
return at::getDeviceAllocator(device_type)->initialized();
|
||||
});
|
||||
|
||||
m.def("_accelerator_emptyCache", []() { at::accelerator::emptyCache(); });
|
||||
|
||||
m.def("_accelerator_getDeviceStats", [](c10::DeviceIndex device_index) {
|
||||
using c10::CachingAllocator::Stat;
|
||||
using c10::CachingAllocator::StatArray;
|
||||
using c10::CachingAllocator::StatType;
|
||||
using c10::CachingDeviceAllocator::DeviceStats;
|
||||
|
||||
const auto stats = at::accelerator::getDeviceStats(device_index);
|
||||
const auto stat_to_dict = [](const Stat& stat) -> py::dict {
|
||||
py::dict dict;
|
||||
dict["current"] = stat.current;
|
||||
dict["peak"] = stat.peak;
|
||||
dict["allocated"] = stat.allocated;
|
||||
dict["freed"] = stat.freed;
|
||||
return dict;
|
||||
};
|
||||
|
||||
const auto stat_array_to_dict = [=](const StatArray& stats) -> py::dict {
|
||||
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)>
|
||||
kStatTypeNames = {"all", "small_pool", "large_pool"};
|
||||
py::dict dict;
|
||||
for (const auto i : c10::irange(kStatTypeNames.size())) {
|
||||
dict[kStatTypeNames[i]] = stat_to_dict(stats[i]);
|
||||
}
|
||||
return dict;
|
||||
};
|
||||
|
||||
py::dict result;
|
||||
result["num_alloc_retries"] = stats.num_alloc_retries;
|
||||
result["num_ooms"] = stats.num_ooms;
|
||||
result["max_split_size"] = stats.max_split_size;
|
||||
result["num_sync_all_streams"] = stats.num_sync_all_streams;
|
||||
result["num_device_alloc"] = stats.num_device_alloc;
|
||||
result["num_device_free"] = stats.num_device_free;
|
||||
result["allocated_bytes"] = stat_array_to_dict(stats.allocated_bytes);
|
||||
result["reserved_bytes"] = stat_array_to_dict(stats.reserved_bytes);
|
||||
result["active_bytes"] = stat_array_to_dict(stats.active_bytes);
|
||||
result["requested_bytes"] = stat_array_to_dict(stats.requested_bytes);
|
||||
result["allocation"] = stat_array_to_dict(stats.allocation);
|
||||
result["segment"] = stat_array_to_dict(stats.segment);
|
||||
result["active"] = stat_array_to_dict(stats.active);
|
||||
result["inactive_split"] = stat_array_to_dict(stats.inactive_split);
|
||||
result["inactive_split_bytes"] =
|
||||
stat_array_to_dict(stats.inactive_split_bytes);
|
||||
result["oversize_allocations"] = stat_to_dict(stats.oversize_allocations);
|
||||
result["oversize_segments"] = stat_to_dict(stats.oversize_segments);
|
||||
return result;
|
||||
});
|
||||
|
||||
m.def(
|
||||
"_accelerator_resetAccumulatedStats", [](c10::DeviceIndex device_index) {
|
||||
at::accelerator::resetAccumulatedStats(device_index);
|
||||
});
|
||||
|
||||
m.def("_accelerator_resetPeakStats", [](c10::DeviceIndex device_index) {
|
||||
at::accelerator::resetPeakStats(device_index);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace torch::accelerator
|
||||
|
@ -255,9 +255,9 @@ def memory_stats(device: "Device" = None) -> dict[str, Any]:
|
||||
|
||||
- ``all``: combined statistics across all memory pools.
|
||||
- ``large_pool``: statistics for the large allocation pool
|
||||
(as of October 2019, for size >= 1MB allocations).
|
||||
(as of June 2025, for size >= 1MB allocations).
|
||||
- ``small_pool``: statistics for the small allocation pool
|
||||
(as of October 2019, for size < 1MB allocations).
|
||||
(as of June 2025, for size < 1MB allocations).
|
||||
|
||||
Metric type:
|
||||
|
||||
|
Reference in New Issue
Block a user