mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
[BE]: Apply RUF015 to torch folder (#113025)
Removes unnecessary allocations of iterators. There is a small chance this may have side effects as the entire iterator is no longer consumed, but this is a way more efficient method for retrieving the first element. Pull Request resolved: https://github.com/pytorch/pytorch/pull/113025 Approved by: https://github.com/ezyang, https://github.com/malfet
This commit is contained in:
committed by
PyTorch MergeBot
parent
fb8ffba47f
commit
8219bf051b
@ -4875,7 +4875,7 @@ class DistributedTest:
|
||||
if optimize_subset:
|
||||
self.assertNotEqual(
|
||||
opt_hook_init_params[0],
|
||||
list(ddp_model_with_optimizer_hook.parameters())[0],
|
||||
next(iter(ddp_model_with_optimizer_hook.parameters())),
|
||||
)
|
||||
# Untouched params should be equal
|
||||
self.assertEqual(
|
||||
@ -7057,7 +7057,7 @@ class DistributedTest:
|
||||
# zero gradient. If we kept dividing by static initial world
|
||||
# size as processes leave, the grad would be smaller.
|
||||
expected_grad = torch.ones(dim, dim, device=self.rank) * grad_scale
|
||||
param = list(net.parameters())[0]
|
||||
param = next(iter(net.parameters()))
|
||||
self.assertEqual(expected_grad, param.grad)
|
||||
# Avoid accumulating grads so that it's the same every iteration
|
||||
net.zero_grad()
|
||||
@ -7077,7 +7077,7 @@ class DistributedTest:
|
||||
* grad_scale
|
||||
* effective_ws
|
||||
) / dist.get_world_size()
|
||||
param = list(net.parameters())[0]
|
||||
param = next(iter(net.parameters()))
|
||||
self.assertEqual(expected_grad, param.grad)
|
||||
# Avoid accumulating grad so that it's the same every iteration.
|
||||
net.zero_grad()
|
||||
@ -7758,11 +7758,11 @@ class DistributedTest:
|
||||
)
|
||||
proxy_params = list(model.fc2.parameters())
|
||||
proxy_buffers = list(model.fc2.buffers())
|
||||
model_fc2_name = [
|
||||
model_fc2_name = next(
|
||||
module_name
|
||||
for module_name, module in model.named_modules()
|
||||
if module is model.fc2
|
||||
][0]
|
||||
)
|
||||
proxy_param_names = [
|
||||
f"{model_fc2_name}.{param_name}"
|
||||
for param_name, _ in model.fc2.named_parameters()
|
||||
|
Reference in New Issue
Block a user