mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-04 16:04:58 +08:00 
			
		
		
		
	Move the asserts in shape functions upsample_nearest_2d op. (#85801)
The assert check are moved to top and the function now returns out. This is needed by the downstream torch-mlir project to correctly determine the output type. Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/85801 Approved by: https://github.com/eellison
This commit is contained in:
		
				
					committed by
					
						
						PyTorch MergeBot
					
				
			
			
				
	
			
			
			
						parent
						
							b60ad2e529
						
					
				
				
					commit
					7ddf167ba5
				
			@ -355,6 +355,10 @@ def upsample_nearest2d(
 | 
			
		||||
    out: List[int] = []
 | 
			
		||||
    out.append(input[0])
 | 
			
		||||
    out.append(input[1])
 | 
			
		||||
 | 
			
		||||
    if (scale_factors is None and output_size is None):
 | 
			
		||||
        assert 0, "Either output_size or scale_factors must be presented"
 | 
			
		||||
 | 
			
		||||
    if output_size is not None:
 | 
			
		||||
        assert (
 | 
			
		||||
            scale_factors is None
 | 
			
		||||
@ -362,7 +366,6 @@ def upsample_nearest2d(
 | 
			
		||||
        assert len(output_size) == 2
 | 
			
		||||
        out.append(output_size[0])
 | 
			
		||||
        out.append(output_size[1])
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
    if scale_factors is not None:
 | 
			
		||||
        assert (
 | 
			
		||||
@ -371,8 +374,8 @@ def upsample_nearest2d(
 | 
			
		||||
        assert len(scale_factors) == 2
 | 
			
		||||
        out.append(int(input[2] * scale_factors[0]))
 | 
			
		||||
        out.append(int(input[3] * scale_factors[1]))
 | 
			
		||||
 | 
			
		||||
    return out
 | 
			
		||||
    assert 0, "Either output_size or scale_factors must be presented"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mm(self: List[int], mat2: List[int]):
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user