Fix more URLs (#153277)

Or ignore them.
Found by running the lint_urls.sh script locally with https://github.com/pytorch/pytorch/pull/153246

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153277
Approved by: https://github.com/malfet
This commit is contained in:
Anthony Shoumikhin
2025-05-14 16:23:50 +00:00
committed by PyTorch MergeBot
parent de92296bbb
commit 7d39e73c57
27 changed files with 39 additions and 44 deletions

View File

@ -10,5 +10,3 @@ example: `py2-cuda9.0-cudnn7-ubuntu16.04`. The Docker images that are
built on Jenkins and are used in triggered builds already have this
environment variable set in their manifest. Also see
`./docker/jenkins/*/Dockerfile` and search for `BUILD_ENVIRONMENT`.
Our Jenkins installation is located at https://ci.pytorch.org/jenkins/.

View File

@ -17,9 +17,8 @@ RUN bash ./install_base.sh && rm install_base.sh
# Update CentOS git version
RUN yum -y remove git
RUN yum -y remove git-*
RUN yum -y install https://packages.endpoint.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm || \
(yum -y install https://packages.endpointdev.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm && \
sed -i "s/packages.endpoint/packages.endpointdev/" /etc/yum.repos.d/endpoint.repo)
RUN yum -y install https://packages.endpointdev.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm && \
sed -i 's/packages.endpoint/packages.endpointdev/' /etc/yum.repos.d/endpoint.repo
RUN yum install -y git
# Install devtoolset

View File

@ -7,7 +7,7 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://repo.anaconda.com/miniconda"
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
if [[ $(uname -m) == "aarch64" ]] || [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download"
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download" # @lint-ignore
CONDA_FILE="Miniforge3-Linux-$(uname -m).sh"
fi

View File

@ -3,7 +3,7 @@
set -uex -o pipefail
PYTHON_DOWNLOAD_URL=https://www.python.org/ftp/python
PYTHON_DOWNLOAD_GITHUB_BRANCH=https://github.com/python/cpython/archive/refs/heads
PYTHON_DOWNLOAD_GITHUB_BRANCH=https://github.com/python/cpython/archive/refs/heads # @lint-ignore
GET_PIP_URL=https://bootstrap.pypa.io/get-pip.py
# Python versions to be installed in /opt/$VERSION_NO

View File

@ -97,7 +97,7 @@ find /opt/_internal -type f -print0 \
| xargs -0 -n1 strip --strip-unneeded 2>/dev/null || true
# We do not need the Python test suites, or indeed the precompiled .pyc and
# .pyo files. Partially cribbed from:
# https://github.com/docker-library/python/blob/master/3.4/slim/Dockerfile
# https://github.com/docker-library/python/blob/master/3.4/slim/Dockerfile # @lint-ignore
find /opt/_internal \
\( -type d -a -name test -o -name tests \) \
-o \( -type f -a -name '*.pyc' -o -name '*.pyo' \) \

View File

@ -2,7 +2,7 @@
# Helper utilities for build
# Script used only in CD pipeline
OPENSSL_DOWNLOAD_URL=https://www.openssl.org/source/old/1.1.1/
OPENSSL_DOWNLOAD_URL=https://www.openssl.org/source/old/1.1.1/ # @lint-ignore
CURL_DOWNLOAD_URL=https://curl.se/download
AUTOCONF_DOWNLOAD_URL=https://ftp.gnu.org/gnu/autoconf

View File

@ -10,5 +10,3 @@ example: `py2-cuda9.0-cudnn7-ubuntu16.04`. The Docker images that are
built on Jenkins and are used in triggered builds already have this
environment variable set in their manifest. Also see
`./docker/jenkins/*/Dockerfile` and search for `BUILD_ENVIRONMENT`.
Our Jenkins installation is located at https://ci.pytorch.org/jenkins/.

View File

@ -24,7 +24,7 @@ if "%CUDA_SUFFIX%" == "" (
if "%REBUILD%"=="" (
if "%BUILD_ENVIRONMENT%"=="" (
curl --retry 3 --retry-all-errors -k https://s3.amazonaws.com/ossci-windows/magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z --output %TMP_DIR_WIN%\magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z
curl --retry 3 --retry-all-errors -k https://s3.amazonaws.com/ossci-windows/magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z --output %TMP_DIR_WIN%\magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z & REM @lint-ignore
) else (
aws s3 cp s3://ossci-windows/magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z %TMP_DIR_WIN%\magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z --quiet
)

View File

@ -1,6 +1,6 @@
@echo off
curl -k https://www.7-zip.org/a/7z1805-x64.exe -O
curl -k -L "https://sourceforge.net/projects/sevenzip/files/7-Zip/18.05/7z1805-x64.exe/download" -o 7z1805-x64.exe
if errorlevel 1 exit /b 1
start /wait 7z1805-x64.exe /S

View File

@ -8,7 +8,7 @@ goto submodule
:clone_pytorch
git clone https://github.com/%PYTORCH_REPO%/%MODULE_NAME%
git clone https://github.com/%PYTORCH_REPO%/%MODULE_NAME% & REM @lint-ignore
cd %MODULE_NAME%

View File

@ -35,7 +35,7 @@ exit /b 1
set CUDA_INSTALL_EXE=cuda_11.8.0_522.06_windows.exe
if not exist "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" (
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDA_SETUP_FILE=%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
set "ARGS=cuda_profiler_api_11.8 thrust_11.8 nvcc_11.8 cuobjdump_11.8 nvprune_11.8 nvprof_11.8 cupti_11.8 cublas_11.8 cublas_dev_11.8 cudart_11.8 cufft_11.8 cufft_dev_11.8 curand_11.8 curand_dev_11.8 cusolver_11.8 cusolver_dev_11.8 cusparse_11.8 cusparse_dev_11.8 npp_11.8 npp_dev_11.8 nvrtc_11.8 nvrtc_dev_11.8 nvml_dev_11.8 nvtx_11.8"
@ -45,7 +45,7 @@ set CUDNN_FOLDER=cudnn-windows-x86_64-9.5.0.50_cuda11-archive
set CUDNN_LIB_FOLDER="lib"
set "CUDNN_INSTALL_ZIP=%CUDNN_FOLDER%.zip"
if not exist "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" (
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDNN_SETUP_FILE=%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
)
@ -62,7 +62,7 @@ goto cuda_common
set CUDA_INSTALL_EXE=cuda_12.4.0_551.61_windows.exe
if not exist "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" (
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDA_SETUP_FILE=%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
set "ARGS=cuda_profiler_api_12.4 thrust_12.4 nvcc_12.4 cuobjdump_12.4 nvprune_12.4 nvprof_12.4 cupti_12.4 cublas_12.4 cublas_dev_12.4 cudart_12.4 cufft_12.4 cufft_dev_12.4 curand_12.4 curand_dev_12.4 cusolver_12.4 cusolver_dev_12.4 cusparse_12.4 cusparse_dev_12.4 npp_12.4 npp_dev_12.4 nvrtc_12.4 nvrtc_dev_12.4 nvml_dev_12.4 nvjitlink_12.4 nvtx_12.4"
@ -72,7 +72,7 @@ set CUDNN_FOLDER=cudnn-windows-x86_64-9.5.0.50_cuda12-archive
set CUDNN_LIB_FOLDER="lib"
set "CUDNN_INSTALL_ZIP=%CUDNN_FOLDER%.zip"
if not exist "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" (
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDNN_SETUP_FILE=%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
)
@ -89,7 +89,7 @@ goto cuda_common
set CUDA_INSTALL_EXE=cuda_12.6.2_560.94_windows.exe
if not exist "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" (
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDA_SETUP_FILE=%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
set "ARGS=cuda_profiler_api_12.6 thrust_12.6 nvcc_12.6 cuobjdump_12.6 nvprune_12.6 nvprof_12.6 cupti_12.6 cublas_12.6 cublas_dev_12.6 cudart_12.6 cufft_12.6 cufft_dev_12.6 curand_12.6 curand_dev_12.6 cusolver_12.6 cusolver_dev_12.6 cusparse_12.6 cusparse_dev_12.6 npp_12.6 npp_dev_12.6 nvrtc_12.6 nvrtc_dev_12.6 nvml_dev_12.6 nvjitlink_12.6 nvtx_12.6"
@ -99,7 +99,7 @@ set CUDNN_FOLDER=cudnn-windows-x86_64-9.5.0.50_cuda12-archive
set CUDNN_LIB_FOLDER="lib"
set "CUDNN_INSTALL_ZIP=%CUDNN_FOLDER%.zip"
if not exist "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" (
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDNN_SETUP_FILE=%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
)
@ -116,7 +116,7 @@ goto cuda_common
set CUDA_INSTALL_EXE=cuda_12.8.0_571.96_windows.exe
if not exist "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" (
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDA_SETUP_FILE=%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
set "ARGS=cuda_profiler_api_12.8 thrust_12.8 nvcc_12.8 cuobjdump_12.8 nvprune_12.8 nvprof_12.8 cupti_12.8 cublas_12.8 cublas_dev_12.8 cudart_12.8 cufft_12.8 cufft_dev_12.8 curand_12.8 curand_dev_12.8 cusolver_12.8 cusolver_dev_12.8 cusparse_12.8 cusparse_dev_12.8 npp_12.8 npp_dev_12.8 nvrtc_12.8 nvrtc_dev_12.8 nvml_dev_12.8 nvjitlink_12.8 nvtx_12.8"
@ -126,7 +126,7 @@ set CUDNN_FOLDER=cudnn-windows-x86_64-9.7.0.66_cuda12-archive
set CUDNN_LIB_FOLDER="lib"
set "CUDNN_INSTALL_ZIP=%CUDNN_FOLDER%.zip"
if not exist "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" (
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDNN_SETUP_FILE=%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
)

View File

@ -1,5 +1,5 @@
set WIN_DRIVER_VN=528.89
set "DRIVER_DOWNLOAD_LINK=https://ossci-windows.s3.amazonaws.com/%WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe"
set "DRIVER_DOWNLOAD_LINK=https://ossci-windows.s3.amazonaws.com/%WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe" & REM @lint-ignore
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output %WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe
if errorlevel 1 exit /b 1

View File

@ -37,7 +37,7 @@ if "%DEBUG%" == "1" (
if not "%CUDA_VERSION%" == "cpu" (
rmdir /s /q magma_%CUDA_PREFIX%_%BUILD_TYPE%
del magma_%CUDA_PREFIX%_%BUILD_TYPE%.7z
curl -k https://s3.amazonaws.com/ossci-windows/magma_%MAGMA_VERSION%_%CUDA_PREFIX%_%BUILD_TYPE%.7z -o magma_%CUDA_PREFIX%_%BUILD_TYPE%.7z
curl -k https://s3.amazonaws.com/ossci-windows/magma_%MAGMA_VERSION%_%CUDA_PREFIX%_%BUILD_TYPE%.7z -o magma_%CUDA_PREFIX%_%BUILD_TYPE%.7z & REM @lint-ignore
7z x -aoa magma_%CUDA_PREFIX%_%BUILD_TYPE%.7z -omagma_%CUDA_PREFIX%_%BUILD_TYPE%
set LIB=%CD%\magma_%CUDA_PREFIX%_%BUILD_TYPE%\lib;%LIB%
)

View File

@ -45,7 +45,7 @@ def get_last_page_num_from_header(header: Any) -> int:
# rel="next", <https://api.github.com/repositories/65600975/labels?per_page=100&page=3>; rel="last"
link_info = header["link"]
# Docs does not specify that it should be present for projects with just few labels
# And https://github.com/malfet/deleteme/actions/runs/7334565243/job/19971396887 it's not the case
# And https://github.com/malfet/deleteme/actions/runs/7334565243/job/19971396887 it's not the case # @lint-ignore
if link_info is None:
return 1
prefix = "&page="

View File

@ -807,7 +807,7 @@ class TestConfigFilter(TestCase):
# test bad things
pr_body = (
"fixes189 fixeshttps://github.com/pytorch/pytorch/issues/75123 "
"closedhttps://githubcom/pytorch/pytorch/issues/75123"
"closedhttps://githubcom/pytorch/pytorch/issues/75123" # @lint-ignore
"fix 234, fixes # 45, fixing #123, close 234, closes#45, closing #123 resolve 234, "
"resolves #45, resolving #123"
)

View File

@ -2031,7 +2031,7 @@ def check_for_sev(org: str, project: str, skip_mandatory_checks: bool) -> None:
response = cast(
dict[str, Any],
gh_fetch_json_list(
"https://api.github.com/search/issues",
"https://api.github.com/search/issues", # @lint-ignore
# Having two label: queries is an AND operation
params={
"q": f'repo:{org}/{project} is:open is:issue label:"ci: sev" label:"merge blocking"'

View File

@ -132,17 +132,17 @@ def rebase_ghstack_onto(
# The contents of a successful push result should look like:
# Summary of changes (ghstack 0.6.0)
# - Updated https://github.com/clee2000/random-testing/pull/2
# - Updated https://github.com/clee2000/random-testing/pull/1
# - Updated https://github.com/clee2000/random-testing-public/pull/2
# - Updated https://github.com/clee2000/random-testing-public/pull/1
# Facebook employees can import your changes by running
# (on a Facebook machine):
# ghimport -s https://github.com/clee2000/random-testing/pull/2
# ghimport -s https://github.com/clee2000/random-testing-public/pull/2
# If you want to work on this diff stack on another machine:
# ghstack checkout https://github.com/clee2000/random-testing/pull/2
# ghstack checkout https://github.com/clee2000/random-testing-public/pull/2
org, project = repo.gh_owner_and_name()
for line in push_result.splitlines():
if "Updated" in line:

View File

@ -128,7 +128,7 @@ jobs:
docker-image: ${{ steps.build-docker-image.outputs.docker-image }}
- uses: nick-fields/retry@7152eba30c6575329ac0576536151aca5a72780e # v3.0.0
name: Push to https://https://ghcr.io/
name: Push to https://ghcr.io/
id: push-to-ghcr-io
if: ${{ github.event_name == 'push' }}
env:

View File

@ -113,4 +113,4 @@ preferred-citation:
publisher:
name: ACM
doi: "10.1145/3620665.3640366"
url: "https://pytorch.org/assets/pytorch2-2.pdf"
url: "https://docs.pytorch.org/assets/pytorch2-2.pdf"

View File

@ -149,7 +149,7 @@ source venv/bin/activate # or `& .\venv\Scripts\Activate.ps1` on Windows
- If you encounter an error such as
```
fatal: unable to access 'https://github.com/pybind11/pybind11.git': could not load PEM client certificate ...
fatal: unable to access 'https://github.com/pybind/pybind11.git': could not load PEM client certificate ...
```
this is likely that you are using HTTP proxying and the certificate expired. To check if the certificate is valid, run
`git config --global --list` and search for config like `http.proxysslcert=<cert_file>`. Then check certificate valid date by running
@ -434,7 +434,7 @@ PyTorch has two main types of documentation:
These are the docs that you see over at [our docs website](https://pytorch.org/docs).
- **Developer facing documentation**:
Developer facing documentation is spread around our READMEs in our codebase and in
the [PyTorch Developer Wiki](https://pytorch.org/wiki).
the [PyTorch Developer Wiki](https://github.com/pytorch/pytorch/wiki).
If you're interested in adding new developer docs, please read this [page on the wiki](https://github.com/pytorch/pytorch/wiki/Where-or-how-should-I-add-documentation) on our best practices for where to put it.
The rest of this section is about user-facing documentation.
@ -988,7 +988,7 @@ If you are working on the CUDA code, here are some useful CUDA debugging tips:
3. CUDA supports a lot of C++11/14 features such as, `std::numeric_limits`, `std::nextafter`,
`std::tuple` etc. in device code. Many of such features are possible because of the
[--expt-relaxed-constexpr](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#constexpr-functions)
nvcc flag. There is a known [issue](https://github.com/ROCm-Developer-Tools/HIP/issues/374)
nvcc flag. There is a known [issue](https://github.com/ROCm/hip/issues/374)
that ROCm errors out on device code, which uses such stl functions.
4. A good performance metric for a CUDA kernel is the
[Effective Memory Bandwidth](https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/).
@ -1135,7 +1135,7 @@ CUDA, MSVC, and PyTorch versions are interdependent; please install matching ver
| 10.2 | Visual Studio 2019 (16.X) (`_MSC_VER` < 1930) | 1.5.0 ~ 1.7.0 |
| 11.0 | Visual Studio 2019 (16.X) (`_MSC_VER` < 1930) | 1.7.0 |
Note: There's a [compilation issue](https://github.com/oneapi-src/oneDNN/issues/812) in several Visual Studio 2019 versions since 16.7.1, so please make sure your Visual Studio 2019 version is not in 16.7.1 ~ 16.7.5
Note: There's a [compilation issue](https://github.com/uxlfoundation/oneDNN/issues/812) in several Visual Studio 2019 versions since 16.7.1, so please make sure your Visual Studio 2019 version is not in 16.7.1 ~ 16.7.5
## Pre-commit tidy/linting hook

View File

@ -502,7 +502,7 @@ To create the PDF:
### Previous Versions
Installation instructions and binaries for previous PyTorch versions may be found
on [our website](https://pytorch.org/previous-versions).
on [our website](https://pytorch.org/get-started/previous-versions).
## Getting Started

View File

@ -12,7 +12,7 @@
#
# The path hints include CUDA_TOOLKIT_ROOT_DIR seeing as some folks
# install NCCL in the same location as the CUDA toolkit.
# See https://github.com/caffe2/caffe2/issues/1601
# See https://github.com/facebookarchive/caffe2/issues/1601
set(NCCL_INCLUDE_DIR $ENV{NCCL_INCLUDE_DIR} CACHE PATH "Folder contains NVIDIA NCCL headers")
set(NCCL_LIB_DIR $ENV{NCCL_LIB_DIR} CACHE PATH "Folder contains NVIDIA NCCL libraries")

View File

@ -103,7 +103,7 @@ To try and reduce the impact of functions that are non-differentiable, we define
#. If the function is not defined (``sqrt(-1)``, ``log(-1)`` or most functions when the input is ``NaN``, for example) then the value used as the gradient is arbitrary (we might also raise an error but that is not guaranteed). Most functions will use ``NaN`` as the gradient, but for performance reasons, some functions will use other values (``log(-1)``, for example).
#. If the function is not a deterministic mapping (i.e. it is not a `mathematical function`_), it will be marked as non-differentiable. This will make it error out in the backward if used on tensors that require grad outside of a ``no_grad`` environment.
.. _mathematical function: https://en.wikipedia.org/wiki/Function_(mathematics)
.. _mathematical function: https://en.wikipedia.org/wiki/Function_%28mathematics%29
.. _locally-disable-grad-doc:

View File

@ -687,7 +687,7 @@ class TestGradTransform(TestCase):
expected = (torch.zeros_like(x), torch.ones_like(x))
self.assertEqual(result, expected)
# TODO: https://github.com/zou3519/functorch/issues/12
# TODO: https://github.com/pytorch/functorch/issues/12
@onlyCPU
def test_unrelated_hessian(self, device):
N = 5

View File

@ -43,7 +43,7 @@ Python scripts in this folder are used to generate lite interpreter models for A
The generated models are located at
https://github.com/pytorch/pytorch/tree/master/android/pytorch_android/src/androidTest/assets (Android)
https://github.com/pytorch/pytorch/tree/master/ios/TestApp/models/ (iOS)
https://github.com/pytorch/pytorch/tree/master/ios/TestApp/models/ (iOS) <!-- @lint-ignore -->
These test models will be executed in Android and iOS simulator tests. Note that we only check if there's error in model execution, but don't check the correctness of model output.

View File

@ -8,7 +8,7 @@ The objective of this exercise is to use the data sparsifier to prune the embedd
3. **Model forward time**: Can we speed up the model forward time by utilizing the sparsity? Specifically, can we introduce torch.sparse interim to reduce number of computations.
## Scope
The [DataNormSparsifier](https://github.com/pytorch/pytorch/blob/master/torch/ao/sparsity/_experimental/data_sparsifier/data_norm_sparsifier.py) is used to sparsify the embeddings of the DLRM model. The model is sparsified for all the combinations of -
The [DataNormSparsifier](https://github.com/pytorch/pytorch/blob/main/torch/ao/pruning/_experimental/data_sparsifier/data_norm_sparsifier.py) is used to sparsify the embeddings of the DLRM model. The model is sparsified for all the combinations of -
1. Sparsity Levels: [0.0, 0.1, 0.2, ... 0.9, 0.91, 0.92, ... 0.99, 1.0]
2. Sparse Block shapes: (1,1) and (1,4)
3. Norm: L1 and L2

View File

@ -530,7 +530,7 @@ RE_EXTERN_SHARED = re.compile(r"extern\s+([\w\(\)]+)?\s*__shared__\s+([\w:<>\s]+
def replace_extern_shared(input_string):
"""Match extern __shared__ type foo[]; syntax and use HIP_DYNAMIC_SHARED() MACRO instead.
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#__shared__
https://github.com/ROCm/hip/blob/master/docs/markdown/hip_kernel_language.md#__shared__
Example:
"extern __shared__ char smemChar[];" => "HIP_DYNAMIC_SHARED( char, smemChar)"
"extern __shared__ unsigned char smem[];" => "HIP_DYNAMIC_SHARED( unsigned char, my_smem)"