mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
[BE][CI][Easy] Run lintrunner
on generated .pyi
stub files (#150732)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150732 Approved by: https://github.com/malfet, https://github.com/cyyever, https://github.com/aorenste
This commit is contained in:
committed by
PyTorch MergeBot
parent
0a7eef140b
commit
7ae204c3b6
6
.github/scripts/lintrunner.sh
vendored
6
.github/scripts/lintrunner.sh
vendored
@ -31,6 +31,9 @@ python3 -m tools.pyi.gen_pyi \
|
||||
--deprecated-functions-path "tools/autograd/deprecated.yaml"
|
||||
python3 torch/utils/data/datapipes/gen_pyi.py
|
||||
|
||||
# Also check generated pyi files
|
||||
find torch -name '*.pyi' -exec git add --force -- "{}" +
|
||||
|
||||
RC=0
|
||||
# Run lintrunner on all files
|
||||
if ! lintrunner --force-color --tee-json=lint.json ${ADDITIONAL_LINTRUNNER_ARGS} 2> /dev/null; then
|
||||
@ -41,6 +44,9 @@ if ! lintrunner --force-color --tee-json=lint.json ${ADDITIONAL_LINTRUNNER_ARGS}
|
||||
RC=1
|
||||
fi
|
||||
|
||||
# Unstage temporally added pyi files
|
||||
find torch -name '*.pyi' -exec git restore --staged -- "{}" +
|
||||
|
||||
# Use jq to massage the JSON lint output into GitHub Actions workflow commands.
|
||||
jq --raw-output \
|
||||
'"::\(if .severity == "advice" or .severity == "disabled" then "warning" else .severity end) file=\(.path),line=\(.line),col=\(.char),title=\(.code) \(.name)::" + (.description | gsub("\\n"; "%0A"))' \
|
||||
|
@ -212,6 +212,11 @@ select = [
|
||||
"__init__.py" = [
|
||||
"F401",
|
||||
]
|
||||
"*.pyi" = [
|
||||
"PYI011", # typed-argument-default-in-stub
|
||||
"PYI021", # docstring-in-stub
|
||||
"PYI053", # string-or-bytes-too-long
|
||||
]
|
||||
"functorch/notebooks/**" = [
|
||||
"F401",
|
||||
]
|
||||
|
@ -113,9 +113,9 @@ class MpsMemoryLeakCheck:
|
||||
self.caching_allocator_before = torch.mps.current_allocated_memory()
|
||||
self.driver_before = torch.mps.driver_allocated_memory()
|
||||
|
||||
def __exit__(self, exec_type, exec_value, traceback):
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
# Don't check for leaks if an exception was thrown
|
||||
if exec_type is not None:
|
||||
if exc_type is not None:
|
||||
return
|
||||
# Compares caching allocator before/after statistics
|
||||
# An increase in allocated memory is a discrepancy indicating a possible memory leak
|
||||
|
@ -1,20 +1,11 @@
|
||||
# ${generated_comment}
|
||||
# mypy: disable-error-code="type-arg"
|
||||
# mypy: allow-untyped-defs
|
||||
# ruff: noqa: F401,PYI054
|
||||
|
||||
import builtins
|
||||
from collections.abc import Sequence
|
||||
from types import EllipsisType
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
ContextManager,
|
||||
Iterator,
|
||||
Literal,
|
||||
NamedTuple,
|
||||
overload,
|
||||
Sequence,
|
||||
TypeVar,
|
||||
)
|
||||
from typing import Any, Callable, Literal, overload, TypeVar
|
||||
|
||||
import torch
|
||||
from torch import (
|
||||
|
@ -1,8 +1,9 @@
|
||||
# ${generated_comment}
|
||||
# mypy: disable-error-code="type-arg"
|
||||
# mypy: allow-untyped-defs
|
||||
# ruff: noqa: F401
|
||||
|
||||
import builtins
|
||||
from collections.abc import Iterable, Iterator, Sequence
|
||||
from enum import Enum, IntEnum
|
||||
from pathlib import Path
|
||||
from types import EllipsisType
|
||||
@ -10,17 +11,13 @@ from typing import (
|
||||
Any,
|
||||
AnyStr,
|
||||
Callable,
|
||||
ContextManager,
|
||||
Generic,
|
||||
IO,
|
||||
Iterable,
|
||||
Iterator,
|
||||
Literal,
|
||||
NamedTuple,
|
||||
overload,
|
||||
Protocol,
|
||||
runtime_checkable,
|
||||
Sequence,
|
||||
SupportsIndex,
|
||||
TypeVar,
|
||||
)
|
||||
@ -71,15 +68,15 @@ from torch.utils._python_dispatch import TorchDispatchMode
|
||||
|
||||
# This module is defined in torch/csrc/Module.cpp
|
||||
|
||||
K = TypeVar("K")
|
||||
T = TypeVar("T")
|
||||
S = TypeVar("S", bound=torch.Tensor)
|
||||
P = ParamSpec("P")
|
||||
ReturnVal = TypeVar("ReturnVal", covariant=True) # return value (always covariant)
|
||||
_T_co = TypeVar("_T_co", covariant=True)
|
||||
K = TypeVar("K") # noqa: PYI001
|
||||
T = TypeVar("T") # noqa: PYI001
|
||||
S = TypeVar("S", bound=torch.Tensor) # noqa: PYI001
|
||||
P = ParamSpec("P") # noqa: PYI001
|
||||
R = TypeVar("R", covariant=True) # return value (always covariant) # noqa: PYI001
|
||||
T_co = TypeVar("T_co", covariant=True) # noqa: PYI001
|
||||
|
||||
@runtime_checkable
|
||||
class _NestedSequence(Protocol[_T_co]):
|
||||
class _NestedSequence(Protocol[T_co]):
|
||||
"""A protocol for representing nested sequences.
|
||||
|
||||
References::
|
||||
@ -88,10 +85,10 @@ class _NestedSequence(Protocol[_T_co]):
|
||||
"""
|
||||
|
||||
def __len__(self, /) -> _int: ...
|
||||
def __getitem__(self, index: _int, /) -> _T_co | _NestedSequence[_T_co]: ...
|
||||
def __getitem__(self, index: _int, /) -> T_co | _NestedSequence[T_co]: ...
|
||||
def __contains__(self, x: object, /) -> _bool: ...
|
||||
def __iter__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]: ...
|
||||
def __reversed__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]: ...
|
||||
def __iter__(self, /) -> Iterator[T_co | _NestedSequence[T_co]]: ...
|
||||
def __reversed__(self, /) -> Iterator[T_co | _NestedSequence[T_co]]: ...
|
||||
def count(self, value: Any, /) -> _int: ...
|
||||
def index(self, value: Any, /) -> _int: ...
|
||||
|
||||
@ -146,7 +143,7 @@ class Stream:
|
||||
def record_event(self, event: Event | None = None) -> Event: ...
|
||||
def __hash__(self) -> _int: ...
|
||||
def __eq__(self, other: object) -> _bool: ...
|
||||
def __enter__(self) -> Stream: ...
|
||||
def __enter__(self) -> Self: ...
|
||||
def __exit__(self, exc_type, exc_val, exc_tb) -> None: ...
|
||||
|
||||
# Defined in torch/csrc/Event.cpp
|
||||
@ -321,14 +318,14 @@ def _set_print_stack_traces_on_fatal_signal(print: _bool) -> None: ...
|
||||
def unify_type_list(types: list[JitType]) -> JitType: ...
|
||||
def _freeze_module(
|
||||
module: ScriptModule,
|
||||
preserved_attrs: list[str] = [],
|
||||
preserved_attrs: list[str] = ...,
|
||||
freeze_interfaces: _bool = True,
|
||||
preserveParameters: _bool = True,
|
||||
) -> ScriptModule: ...
|
||||
def _jit_pass_optimize_frozen_graph(Graph, optimize_numerics: _bool = True) -> None: ...
|
||||
def _jit_pass_optimize_for_inference(
|
||||
module: torch.jit.ScriptModule,
|
||||
other_methods: list[str] = [],
|
||||
other_methods: list[str] = ...,
|
||||
) -> None: ...
|
||||
def _jit_pass_fold_frozen_conv_bn(graph: Graph): ...
|
||||
def _jit_pass_fold_frozen_conv_add_or_sub(graph: Graph): ...
|
||||
@ -759,7 +756,7 @@ class AliasDb: ...
|
||||
|
||||
class _InsertPoint:
|
||||
def __enter__(self) -> None: ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
# Defined in torch/csrc/jit/ir/ir.h
|
||||
class Use:
|
||||
@ -1078,8 +1075,8 @@ class LiteScriptModule:
|
||||
def run_method(self, method_name: str, *input): ...
|
||||
|
||||
# NOTE: switch to collections.abc.Callable in python 3.9
|
||||
class ScriptFunction(Generic[P, ReturnVal]):
|
||||
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> ReturnVal: ...
|
||||
class ScriptFunction(Generic[P, R]):
|
||||
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R: ...
|
||||
def save(self, filename: str, _extra_files: dict[str, bytes]) -> None: ...
|
||||
def save_to_buffer(self, _extra_files: dict[str, bytes]) -> bytes: ...
|
||||
@property
|
||||
@ -1092,9 +1089,9 @@ class ScriptFunction(Generic[P, ReturnVal]):
|
||||
def qualified_name(self) -> str: ...
|
||||
|
||||
# NOTE: switch to collections.abc.Callable in python 3.9
|
||||
class ScriptMethod(Generic[P, ReturnVal]):
|
||||
class ScriptMethod(Generic[P, R]):
|
||||
graph: Graph
|
||||
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> ReturnVal: ...
|
||||
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R: ...
|
||||
@property
|
||||
def owner(self) -> ScriptModule: ...
|
||||
@property
|
||||
@ -1481,9 +1478,7 @@ def _get_function_stack_at(idx: _int) -> Any: ...
|
||||
def _len_torch_function_stack() -> _int: ...
|
||||
def _set_torch_dispatch_mode(cls: Any) -> None: ...
|
||||
def _push_on_torch_dispatch_stack(cls: TorchDispatchMode) -> None: ...
|
||||
def _pop_torch_dispatch_stack(
|
||||
mode_key: _TorchDispatchModeKey | None = None,
|
||||
) -> Any: ...
|
||||
def _pop_torch_dispatch_stack(mode_key: _TorchDispatchModeKey | None = None) -> Any: ...
|
||||
def _get_dispatch_mode(mode_key: _TorchDispatchModeKey | None) -> Any: ...
|
||||
def _unset_dispatch_mode(mode: _TorchDispatchModeKey) -> TorchDispatchMode | None: ...
|
||||
def _set_dispatch_mode(mode: TorchDispatchMode) -> None: ...
|
||||
@ -1494,42 +1489,42 @@ def _activate_gpu_trace() -> None: ...
|
||||
class _DisableTorchDispatch:
|
||||
def __init__(self) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _EnableTorchFunction:
|
||||
def __init__(self) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _EnablePythonDispatcher:
|
||||
def __init__(self) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _DisablePythonDispatcher:
|
||||
def __init__(self) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _EnablePreDispatch:
|
||||
def __init__(self) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _DisableFuncTorch:
|
||||
def __init__(self) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _DisableAutocast:
|
||||
def __init__(self) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _InferenceMode:
|
||||
def __init__(self, enabled: _bool) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
def _set_autograd_fallback_mode(mode: str) -> None: ...
|
||||
def _get_autograd_fallback_mode() -> str: ...
|
||||
@ -1783,32 +1778,32 @@ def _commit_update(a: Tensor) -> None: ...
|
||||
class _ExcludeDispatchKeyGuard:
|
||||
def __init__(self, keyset: DispatchKeySet) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _IncludeDispatchKeyGuard:
|
||||
def __init__(self, k: DispatchKey) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _ForceDispatchKeyGuard:
|
||||
def __init__(self, include: DispatchKeySet, exclude: DispatchKeySet) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _PreserveDispatchKeyGuard:
|
||||
def __init__(self) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _AutoDispatchBelowAutograd:
|
||||
def __init__(self) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
class _AutoDispatchBelowADInplaceOrView:
|
||||
def __init__(self) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
def _dispatch_print_registrations_for_dispatch_key(dispatch_key: str = "") -> None: ...
|
||||
def _dispatch_get_registrations_for_dispatch_key(
|
||||
@ -1827,18 +1822,16 @@ class _TorchDispatchModeKey(Enum):
|
||||
class _SetExcludeDispatchKeyGuard:
|
||||
def __init__(self, k: DispatchKey, enabled: _bool) -> None: ...
|
||||
def __enter__(self): ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
||||
# Defined in torch/csrc/utils/schema_info.h
|
||||
|
||||
class _SchemaInfo:
|
||||
def __init__(self, schema: _int) -> None: ...
|
||||
|
||||
@overload
|
||||
def is_mutable(self) -> _bool: ...
|
||||
@overload
|
||||
def is_mutable(self, name: str) -> _bool: ...
|
||||
|
||||
def has_argument(self, name: str) -> _bool: ...
|
||||
|
||||
# Defined in torch/csrc/utils/init.cpp
|
||||
@ -2431,7 +2424,7 @@ def _create_graph_by_tracing(
|
||||
strict: Any,
|
||||
force_outplace: Any,
|
||||
self: Any = None,
|
||||
argument_names: list[str] = [],
|
||||
argument_names: list[str] = ...,
|
||||
) -> tuple[Graph, Stack]: ...
|
||||
def _tracer_warn_use_python(): ...
|
||||
def _get_tracing_state() -> TracingState: ...
|
||||
@ -2458,8 +2451,6 @@ class InferredType:
|
||||
def success(self) -> _bool: ...
|
||||
def reason(self) -> str: ...
|
||||
|
||||
R = TypeVar("R", bound=JitType)
|
||||
|
||||
class Type(JitType):
|
||||
def str(self) -> _str: ...
|
||||
def containedTypes(self) -> list[JitType]: ...
|
||||
@ -2565,9 +2556,11 @@ class InterfaceType(JitType):
|
||||
def getMethod(self, name: str) -> FunctionSchema | None: ...
|
||||
def getMethodNames(self) -> list[str]: ...
|
||||
|
||||
class OptionalType(JitType, Generic[R]):
|
||||
def __init__(self, a: JitType) -> None: ...
|
||||
def getElementType(self) -> JitType: ...
|
||||
JitTypeT = TypeVar("JitTypeT", bound=JitType) # noqa: PYI001
|
||||
|
||||
class OptionalType(JitType, Generic[JitTypeT]):
|
||||
def __init__(self, a: JitTypeT) -> None: ...
|
||||
def getElementType(self) -> JitTypeT: ...
|
||||
@staticmethod
|
||||
def ofTensor() -> OptionalType: ...
|
||||
|
||||
@ -2681,6 +2674,7 @@ def _fuse_to_static_module(
|
||||
# Defined in torch/csrc/fx/node.cpp
|
||||
def _fx_map_aggregate(a: Any, fn: Callable[[Any], Any]) -> Any: ...
|
||||
def _fx_map_arg(a: Any, fn: Callable[[Any], Any]) -> Any: ...
|
||||
|
||||
class _NodeBase:
|
||||
_erased: _bool
|
||||
_prev: FxNode
|
||||
|
@ -3,7 +3,7 @@
|
||||
import datetime
|
||||
from enum import Enum
|
||||
from types import TracebackType
|
||||
from typing import Callable, Optional
|
||||
from typing import Callable
|
||||
|
||||
class Aggregation(Enum):
|
||||
VALUE = ...
|
||||
@ -48,9 +48,9 @@ class _WaitCounterTracker:
|
||||
def __enter__(self) -> None: ...
|
||||
def __exit__(
|
||||
self,
|
||||
exec_type: Optional[type[BaseException]] = None,
|
||||
exec_value: Optional[BaseException] = None,
|
||||
traceback: Optional[TracebackType] = None,
|
||||
exc_type: type[BaseException] | None = None,
|
||||
exc_value: BaseException | None = None,
|
||||
traceback: TracebackType | None = None,
|
||||
) -> None: ...
|
||||
|
||||
class _WaitCounter:
|
||||
|
@ -1,7 +1,8 @@
|
||||
# ${generated_comment}
|
||||
# mypy: disable-error-code="type-arg"
|
||||
|
||||
from typing import Literal, overload, Sequence
|
||||
from collections.abc import Sequence
|
||||
from typing import Literal, overload
|
||||
|
||||
from torch import memory_format, Tensor
|
||||
from torch.types import _bool, _device, _dtype, _int, _size
|
||||
|
@ -1,5 +1,5 @@
|
||||
from enum import Enum
|
||||
from typing import Any, Literal, Optional
|
||||
from typing import Literal
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
from torch._C import device, dtype, layout
|
||||
@ -73,7 +73,7 @@ class ProfilerConfig:
|
||||
with_flops: bool,
|
||||
with_modules: bool,
|
||||
experimental_config: _ExperimentalConfig,
|
||||
trace_id: Optional[str] = None,
|
||||
trace_id: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
class _ProfilerEvent:
|
||||
@ -243,4 +243,4 @@ class _RecordFunctionFast:
|
||||
keyword_values: dict | None = None,
|
||||
) -> None: ...
|
||||
def __enter__(self) -> None: ...
|
||||
def __exit__(self, *args: Any) -> None: ...
|
||||
def __exit__(self, *exc_info: object) -> None: ...
|
||||
|
@ -1,31 +1,11 @@
|
||||
# ${generated_comment}
|
||||
# mypy: allow-untyped-defs
|
||||
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
ContextManager,
|
||||
Final,
|
||||
Iterator,
|
||||
Literal,
|
||||
NamedTuple,
|
||||
NoReturn,
|
||||
overload,
|
||||
Sequence,
|
||||
TypeVar,
|
||||
)
|
||||
from typing import Final, NoReturn
|
||||
from typing_extensions import Self
|
||||
|
||||
from torch import (
|
||||
contiguous_format,
|
||||
Generator,
|
||||
inf,
|
||||
memory_format,
|
||||
strided,
|
||||
SymInt,
|
||||
Tensor,
|
||||
)
|
||||
from torch.types import (
|
||||
from torch import SymInt, Tensor
|
||||
from torch.types import ( # noqa: F401
|
||||
_bool,
|
||||
_device,
|
||||
_dtype,
|
||||
|
@ -1,7 +1,8 @@
|
||||
# ${generated_comment}
|
||||
# mypy: allow-untyped-defs
|
||||
|
||||
from typing import Any, Callable, Literal, overload, Sequence
|
||||
from collections.abc import Sequence
|
||||
from typing import Any, Callable, Literal, overload
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
from torch import Tensor
|
||||
|
@ -2383,7 +2383,7 @@ class CudaNonDefaultStream:
|
||||
device_type=deviceStream.device_type)
|
||||
torch._C._cuda_setDevice(beforeDevice)
|
||||
|
||||
def __exit__(self, exec_type, exec_value, traceback):
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
# After completing CUDA test load previously active streams on all
|
||||
# CUDA devices.
|
||||
beforeDevice = torch.cuda.current_device()
|
||||
@ -2431,9 +2431,9 @@ class CudaMemoryLeakCheck:
|
||||
driver_mem_allocated = bytes_total - bytes_free
|
||||
self.driver_befores.append(driver_mem_allocated)
|
||||
|
||||
def __exit__(self, exec_type, exec_value, traceback):
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
# Don't check for leaks if an exception was thrown
|
||||
if exec_type is not None:
|
||||
if exc_type is not None:
|
||||
return
|
||||
|
||||
# Compares caching allocator before/after statistics
|
||||
|
@ -5,19 +5,8 @@
|
||||
# Note that, for mypy, .pyi file takes precedent over .py file, such that we must define the interface for other
|
||||
# classes/objects here, even though we are not injecting extra code into them at the moment.
|
||||
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Iterable,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
from collections.abc import Iterable, Iterator
|
||||
from typing import Any, Callable, Literal, Optional, TypeVar, Union
|
||||
|
||||
from torch.utils.data import Dataset, default_collate, IterableDataset
|
||||
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
|
||||
@ -27,19 +16,19 @@ _T = TypeVar("_T")
|
||||
_T_co = TypeVar("_T_co", covariant=True)
|
||||
UNTRACABLE_DATAFRAME_PIPES: Any
|
||||
|
||||
class DataChunk(List[_T]):
|
||||
items: List[_T]
|
||||
class DataChunk(list[_T]):
|
||||
items: list[_T]
|
||||
def __init__(self, items: Iterable[_T]) -> None: ...
|
||||
def as_str(self, indent: str = "") -> str: ...
|
||||
def __iter__(self) -> Iterator[_T]: ...
|
||||
def raw_iterator(self) -> Iterator[_T]: ...
|
||||
|
||||
class MapDataPipe(Dataset[_T_co], metaclass=_DataPipeMeta):
|
||||
functions: Dict[str, Callable] = ...
|
||||
reduce_ex_hook: Optional[Callable] = ...
|
||||
getstate_hook: Optional[Callable] = ...
|
||||
str_hook: Optional[Callable] = ...
|
||||
repr_hook: Optional[Callable] = ...
|
||||
functions: dict[str, Callable] = ...
|
||||
reduce_ex_hook: Callable | None = ...
|
||||
getstate_hook: Callable | None = ...
|
||||
str_hook: Callable | None = ...
|
||||
repr_hook: Callable | None = ...
|
||||
def __getattr__(self, attribute_name: Any): ...
|
||||
@classmethod
|
||||
def register_function(cls, function_name: Any, function: Any) -> None: ...
|
||||
@ -58,7 +47,7 @@ class MapDataPipe(Dataset[_T_co], metaclass=_DataPipeMeta):
|
||||
${MapDataPipeMethods}
|
||||
|
||||
class IterDataPipe(IterableDataset[_T_co], metaclass=_IterDataPipeMeta):
|
||||
functions: Dict[str, Callable] = ...
|
||||
functions: dict[str, Callable] = ...
|
||||
reduce_ex_hook: Optional[Callable] = ...
|
||||
getstate_hook: Optional[Callable] = ...
|
||||
str_hook: Optional[Callable] = ...
|
||||
|
Reference in New Issue
Block a user