Fix fx2trt CI test trigger condition (#71014)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71014

Replace test trigger with test_config matching.

Test Plan:
CI
https://github.com/pytorch/pytorch/runs/4746717568?check_suite_focus=true

Reviewed By: janeyx99

Differential Revision: D33480971

fbshipit-source-id: 9513e464753343a7ae47fcfaf48119f34bae94c5
This commit is contained in:
Shirong Wu
2022-01-10 13:32:09 -08:00
committed by Facebook GitHub Bot
parent 80659b71a5
commit 7a08030903
58 changed files with 236 additions and 21 deletions

View File

@ -568,7 +568,7 @@ elif [[ "${BUILD_ENVIRONMENT}" == *distributed* || "${JOB_BASE_NAME}" == *distri
test_rpc
elif [[ "${TEST_CONFIG}" = docs_test ]]; then
test_docs_test
elif [[ "${BUILD_ENVIRONMENT}" == *linux-xenial-cuda11.3-py3.6-gcc7* ]]; then
elif [[ "${TEST_CONFIG}" == fx2trt ]]; then
test_torch_fx2trt
else
install_torchvision

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from parameterized import parameterized
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestAdaptiveAvgPoolConverter(AccTestCase):
@ -48,3 +49,6 @@ class TestAdaptiveAvgPoolConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.adaptive_avg_pool2d}
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from parameterized import parameterized, param
from torch.testing._internal.common_fx2trt import AccTestCase
from torch.testing._internal.common_utils import run_tests
class TestAvgPoolConverter(AccTestCase):
@ -45,3 +46,6 @@ class TestAvgPoolConverter(AccTestCase):
inputs = [torch.randn(1, 3, 224, 224)]
self.run_test(TestModule(), inputs, expected_ops={acc_ops.avg_pool2d})
if __name__ == '__main__':
run_tests()

View File

@ -3,6 +3,7 @@
import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestBatchNormConverter(AccTestCase):
@ -38,3 +39,6 @@ class TestBatchNormConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.batch_norm}
)
if __name__ == '__main__':
run_tests()

View File

@ -7,6 +7,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
elementwise_ops = [
((lambda x, y: x + y), acc_ops.add),
@ -101,3 +102,6 @@ class TestBinaryOpConverters(AccTestCase):
]
self.run_test_with_dynamic_shape(Op(), input_specs, expected_ops={expected_op})
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestCatConverter(AccTestCase):
@ -34,3 +35,6 @@ class TestCatConverter(AccTestCase):
),
]
self.run_test_with_dynamic_shape(Cat(), input_specs, expected_ops={acc_ops.cat})
if __name__ == '__main__':
run_tests()

View File

@ -3,6 +3,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from parameterized import parameterized
from torch.testing._internal.common_fx2trt import AccTestCase
from torch.testing._internal.common_utils import run_tests
class TestChunkConverter(AccTestCase):
@ -24,3 +25,6 @@ class TestChunkConverter(AccTestCase):
inputs,
expected_ops={acc_ops.chunk},
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import parameterized, param
from torch.testing._internal.common_utils import run_tests
class TestClampConverter(AccTestCase):
@ -27,3 +28,6 @@ class TestClampConverter(AccTestCase):
inputs = [torch.randn(3, 4)]
self.run_test(TestModule(), inputs, expected_ops={acc_ops.clamp})
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized, param
from torch.testing._internal.common_utils import run_tests
class TestConvolutionConverter(AccTestCase):
@ -59,3 +60,6 @@ class TestConvolutionConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.conv2d}
)
if __name__ == '__main__':
run_tests()

View File

@ -7,6 +7,7 @@ import torch.fx
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
@unittest.skip(
@ -44,3 +45,6 @@ class TestDequantizeConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.dequantize}
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestELUConverter(AccTestCase):
@ -30,3 +31,6 @@ class TestELUConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.elu}
)
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestFlattenConverter(AccTestCase):
@ -65,3 +66,6 @@ class TestFlattenConverter(AccTestCase):
input_specs,
expected_ops={acc_ops.flatten},
)
if __name__ == '__main__':
run_tests()

View File

@ -2,6 +2,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestGELU(AccTestCase):
@ -33,3 +34,6 @@ class TestGELU(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.gelu}
)
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestGetitemConverter(AccTestCase):
@ -52,3 +53,6 @@ class TestGetitemConverter(AccTestCase):
inputs = [torch.randn(2, 10, 10, 10)]
self.run_test(Getitem(idx), inputs, expected_ops={acc_ops.getitem})
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase
from torch.testing._internal.common_utils import run_tests
class TestHardtanhConverter(AccTestCase):
@ -14,3 +15,6 @@ class TestHardtanhConverter(AccTestCase):
inputs = [torch.randn(2, 10, 10, 10)]
self.run_test(Hardtanh(), inputs, expected_ops={acc_ops.hardtanh})
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized, param
from torch.testing._internal.common_utils import run_tests
class TestLayerNormConverter(AccTestCase):
@ -59,3 +60,6 @@ class TestLayerNormConverter(AccTestCase):
self.run_test_with_dynamic_shape(
LayerNorm(normalized_shape), input_specs, expected_ops={acc_ops.layer_norm}
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestLeakyReLUConverter(AccTestCase):
@ -30,3 +31,6 @@ class TestLeakyReLUConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.leaky_relu}
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestLinearConverter(AccTestCase):
@ -50,3 +51,6 @@ class TestLinearConverter(AccTestCase):
input_specs,
expected_ops={acc_ops.linear},
)
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestMatMulConverter(AccTestCase):
@ -85,3 +86,6 @@ class TestMatMulConverter(AccTestCase):
expected_ops={acc_ops.matmul},
test_implicit_batch_dim=test_implicit_batch_dim,
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestMaxConverter(AccTestCase):
@ -77,3 +78,6 @@ class TestMaxConverter(AccTestCase):
inputs = [torch.randn(3, 4), torch.randn(3, 4)]
self.run_test(MaxMethod(), inputs, expected_ops={acc_ops.maximum})
if __name__ == '__main__':
run_tests()

View File

@ -3,6 +3,7 @@
import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase
from torch.testing._internal.common_utils import run_tests
class TestMaximumConverter(AccTestCase):
@ -29,3 +30,6 @@ class TestMaximumMethodConverter(AccTestCase):
torch.randn(3, 4),
]
self.run_test(Maximum(), inputs, expected_ops={acc_ops.maximum})
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized, param
from torch.testing._internal.common_utils import run_tests
class TestMaxPoolConverter(AccTestCase):
@ -58,3 +59,6 @@ class TestMaxPoolConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.max_pool2d}
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestMinConverter(AccTestCase):
@ -77,3 +78,6 @@ class TestMinConverter(AccTestCase):
inputs = [torch.randn(3, 4), torch.randn(3, 4)]
self.run_test(MinMethod(), inputs, expected_ops={acc_ops.minimum})
if __name__ == '__main__':
run_tests()

View File

@ -3,6 +3,7 @@
import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase
from torch.testing._internal.common_utils import run_tests
class TestMinimumConverter(AccTestCase):
@ -29,3 +30,6 @@ class TestMinimumMethodConverter(AccTestCase):
torch.randn(3, 4),
]
self.run_test(Minimum(), inputs, expected_ops={acc_ops.minimum})
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestNarrowConverter(AccTestCase):
@ -26,3 +27,6 @@ class TestNarrowConverter(AccTestCase):
expected_ops={acc_ops.slice_tensor},
test_explicit_batch_dim=False,
)
if __name__ == '__main__':
run_tests()

View File

@ -7,6 +7,7 @@ from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import param, parameterized
import unittest
import tensorrt as trt
from torch.testing._internal.common_utils import run_tests
class TestPadConverter(AccTestCase):
@ -67,3 +68,6 @@ class TestPadConverter(AccTestCase):
inputs,
expected_ops={acc_ops.pad},
)
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestPermuteConverter(AccTestCase):
@ -51,3 +52,6 @@ class TestPermuteConverter(AccTestCase):
self.run_test_with_dynamic_shape(
Permute(), input_specs, expected_ops={acc_ops.permute}
)
if __name__ == '__main__':
run_tests()

View File

@ -7,6 +7,7 @@ import torch.fx
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
@unittest.skip(
@ -42,3 +43,6 @@ class TestQuantizePerTensorConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.quantize_per_tensor}
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
reduce_ops = [(torch.sum, acc_ops.sum), (torch.mean, acc_ops.mean)]
@ -63,3 +64,6 @@ class TestReduceConverter(AccTestCase):
expected_ops={expected_acc_op},
test_implicit_batch_dim=False,
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestReLUConverter(AccTestCase):
@ -30,3 +31,6 @@ class TestReLUConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.relu}
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestReshapeConverter(AccTestCase):
@ -50,3 +51,6 @@ class TestReshapeConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(target_shape), input_specs, expected_ops={acc_ops.reshape}
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestSeLUConverter(AccTestCase):
@ -30,3 +31,6 @@ class TestSeLUConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.selu}
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase
from torch.testing._internal.common_utils import run_tests
class TestSigmoid(AccTestCase):
@ -14,3 +15,6 @@ class TestSigmoid(AccTestCase):
inputs = [torch.randn(1, 2, 3)]
self.run_test(Sigmoid(), inputs, expected_ops={acc_ops.sigmoid})
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestSizeConverter(AccTestCase):
@ -32,3 +33,6 @@ class TestSizeConverter(AccTestCase):
self.run_test_with_dynamic_shape(
Size(), input_specs, expected_ops={acc_ops.size}
)
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestSoftmaxConverter(AccTestCase):
@ -64,3 +65,6 @@ class TestSoftmaxConverter(AccTestCase):
expect_error=AssertionError,
test_explicit_batch_dim=False,
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestSoftsignConverter(AccTestCase):
@ -30,3 +31,6 @@ class TestSoftsignConverter(AccTestCase):
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={acc_ops.softsign}
)
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestSplitConverter(AccTestCase):
@ -30,3 +31,6 @@ class TestSplitConverter(AccTestCase):
},
test_explicit_batch_dim=False,
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestSqueeze(AccTestCase):
@ -30,3 +31,6 @@ class TestSqueeze(AccTestCase):
self.run_test_with_dynamic_shape(
Squeeze(), input_specs, expected_ops={acc_ops.squeeze}
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from torch.testing._internal.common_utils import run_tests
class TestTanh(AccTestCase):
@ -30,3 +31,6 @@ class TestTanh(AccTestCase):
self.run_test_with_dynamic_shape(
Tanh(), input_specs, expected_ops={acc_ops.tanh}
)
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestTile(AccTestCase):
@ -68,3 +69,6 @@ class TestTile(AccTestCase):
self.run_test_with_dynamic_shape(
Tile(dims), input_specs, expected_ops={acc_ops.tile}
)
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestTopKConverter(AccTestCase):
@ -41,3 +42,6 @@ class TestTopKConverter(AccTestCase):
expected_ops={acc_ops.topk},
test_implicit_batch_dim=(dim != 0),
)
if __name__ == '__main__':
run_tests()

View File

@ -7,6 +7,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
unary_ops = [
(torch.sin, acc_ops.sin),
@ -43,3 +44,6 @@ class TestUnaryOpConverters(AccTestCase):
m = TestModule(orig_op)
inputs = [torch.randn(2, 2, 3)]
self.run_test(m, inputs, expected_ops={expected_op})
if __name__ == '__main__':
run_tests()

View File

@ -6,6 +6,7 @@ import torch.fx.experimental.fx_acc.acc_ops as acc_ops
import torch.nn as nn
from torch.testing._internal.common_fx2trt import AccTestCase, InputTensorSpec
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
class TestUnsqueeze(AccTestCase):
@ -52,3 +53,6 @@ class TestUnsqueeze(AccTestCase):
self.run_test_with_dynamic_shape(
Unsqueeze(dim), input_specs, expected_ops={acc_ops.unsqueeze}
)
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ import operator
import torch
import torch.fx
from torch.testing._internal.common_fx2trt import VanillaTestCase
from torch.testing._internal.common_utils import run_tests
class TestAddConverter(VanillaTestCase):
@ -21,3 +22,6 @@ class TestAddConverter(VanillaTestCase):
inputs = [torch.randn(1, 1)]
self.run_test(add, inputs, expected_ops={torch.add})
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ import torch
import torch.fx
from torch.testing._internal.common_fx2trt import VanillaTestCase
from parameterized import parameterized, param
from torch.testing._internal.common_utils import run_tests
class TestConvolutionConverter(VanillaTestCase):
@ -39,3 +40,6 @@ class TestConvolutionConverter(VanillaTestCase):
inputs = [torch.randn(1, 3, 224, 224)]
self.run_test(TestModule(), inputs, expected_ops={torch.nn.modules.conv.Conv2d})
if __name__ == '__main__':
run_tests()

View File

@ -1,13 +1,16 @@
#!/usr/bin/env python3
# (c) Facebook, Inc. and its affiliates. Confidential and proprietary.
import unittest as ut
# Test that this import should not trigger any error when run
# in non-GPU hosts, or in any build mode.
import torch.fx.experimental.fx2trt.lower as fxl # noqa: F401
from torch.testing._internal.common_utils import TestCase, run_tests
class MainTests(ut.TestCase):
class MainTests(TestCase):
def test_1(self):
pass
if __name__ == '__main__':
run_tests()

View File

@ -1,13 +1,13 @@
from typing import List, Optional
import unittest
import torch
from torch.fx.experimental.fx2trt import (
InputTensorSpec,
)
from torch.testing._internal.common_utils import TestCase, run_tests
class TestTRTModule(unittest.TestCase):
class TestTRTModule(TestCase):
def _validate_spec(
self,
spec: InputTensorSpec,
@ -44,3 +44,6 @@ class TestTRTModule(unittest.TestCase):
for batch_size, shape in zip(batch_size_range, spec.shape_ranges[0]):
self.assertEqual(batch_size, shape[0])
self.assertSequenceEqual(tensor.shape[1:], shape[1:])
if __name__ == '__main__':
run_tests()

View File

@ -1,5 +1,3 @@
import unittest
import torch
import torch.fx
import torch.fx.experimental.fx_acc.acc_tracer as acc_tracer
@ -8,9 +6,11 @@ from torch.fx.experimental.fx2trt import (
InputTensorSpec,
TRTModule,
)
from torch.testing._internal.common_utils import TestCase, run_tests
import os
class TestTRTModule(unittest.TestCase):
class TestTRTModule(TestCase):
def test_save_and_load_trt_module(self):
class TestModule(torch.nn.Module):
def forward(self, x):
@ -29,6 +29,7 @@ class TestTRTModule(unittest.TestCase):
torch.testing.assert_allclose(
reload_trt_mod(inputs[0].cuda()).cpu(), ref_output, rtol=1e-04, atol=1e-04
)
os.remove(f"{os.getcwd()}/trt.pt")
def test_save_and_load_state_dict(self):
class TestModule(torch.nn.Module):
@ -50,3 +51,6 @@ class TestTRTModule(unittest.TestCase):
torch.testing.assert_allclose(
new_trt_mod(inputs[0].cuda()).cpu(), ref_output, rtol=1e-04, atol=1e-04
)
if __name__ == '__main__':
run_tests()

View File

@ -5,6 +5,7 @@ from torch.fx.experimental.fx2trt.passes.fuse_pass import (
fuse_permute_linear,
trt_transposed_linear,
)
from torch.testing._internal.common_utils import run_tests
class TestFusePermuteLinear(AccTestCase):
@ -72,3 +73,6 @@ class TestFusePermuteLinear(AccTestCase):
{trt_transposed_linear},
apply_passes=[fuse_permute_linear],
)
if __name__ == '__main__':
run_tests()

View File

@ -6,6 +6,7 @@ from torch.fx.experimental.fx2trt.passes.fuse_pass import (
fuse_permute_matmul,
trt_transposed_matmul,
)
from torch.testing._internal.common_utils import run_tests
def tranpose_last_two_dims(x):
@ -118,3 +119,6 @@ class TestFusePermuteMatmul(AccTestCase):
{trt_transposed_matmul},
apply_passes=[fuse_permute_matmul],
)
if __name__ == '__main__':
run_tests()

View File

@ -4,6 +4,7 @@ from torch.testing._internal.common_fx2trt import AccTestCase
from torch.fx.experimental.fx2trt.passes.fuse_pass import (
fuse_unsqueeze_cat_sum,
)
from torch.testing._internal.common_utils import run_tests
class TestFuseUnsqueezeCatSum(AccTestCase):
@ -33,3 +34,6 @@ class TestFuseUnsqueezeCatSum(AccTestCase):
{acc_ops.unsqueeze, acc_ops.cat, acc_ops.sum},
apply_passes=[fuse_unsqueeze_cat_sum],
)
if __name__ == '__main__':
run_tests()

View File

@ -8,6 +8,7 @@ from torch.fx.experimental.fx2trt.passes.fuse_pass import (
fuse_permute_matmul,
trt_transposed_matmul,
)
from torch.testing._internal.common_utils import run_tests
def permute021(x):
@ -57,3 +58,6 @@ class TestMultiFuse(AccTestCase):
{acc_ops.permute},
apply_passes=[fuse_permute_matmul, fuse_permute_linear],
)
if __name__ == '__main__':
run_tests()

View File

@ -1,15 +1,15 @@
import logging
import unittest as ut
import torch.fx as fx
import torch.fx.experimental.fx2trt.passes.remove_duplicate_output_args as dedup
import torch.nn as nn
from torch.testing._internal.common_utils import TestCase, run_tests
_LOGGER = logging.getLogger(__name__)
class TestFx2TrtPasses(ut.TestCase):
class TestFx2TrtPasses(TestCase):
def test_remove_duplicate_output_args(self):
class Sub(nn.Module):
def forward(self, x):
@ -65,3 +65,6 @@ graph():
assert (
ttop_a_graph_expected == ttop_a_graph_actual
), f"Unexpected ttop.a graph: {ttop_a_graph_actual}"
if __name__ == '__main__':
run_tests()

View File

@ -1,17 +1,17 @@
import logging
import unittest as ut
# @manual=//caffe2:torch_fx2trt
from torch.fx.experimental.fx2trt.lower import Lowerer
from torch.fx.experimental.fx2trt import LowerSetting
import torch
import torch.fx as fx
import torch.nn as nn
from torch.testing._internal.common_utils import TestCase, run_tests
logger = logging.getLogger(__name__)
class Fx2trtLowerTests(ut.TestCase):
class Fx2trtLowerTests(TestCase):
def test_fx2trt_lower(self):
mod = _Mod()
mod_traced = fx.symbolic_trace(mod)
@ -24,3 +24,6 @@ class Fx2trtLowerTests(ut.TestCase):
class _Mod(nn.Module):
def forward(self, x):
return (x, 2 * x)
if __name__ == '__main__':
run_tests()

View File

@ -1,15 +1,15 @@
# Owner(s): ["oncall: fx"]
import unittest
import torch.fx.experimental.fx_acc.acc_ops # noqa: F401
import torch
import torch.fx
from torch.fx.experimental.fx2trt.tools.trt_splitter import create_trt_operator_support
import torch.nn as nn
from torch.fx.experimental.fx_acc import acc_ops, acc_tracer
from torch.testing._internal.common_utils import TestCase, run_tests
class TestTRTOperatorSupport(unittest.TestCase):
class TestTRTOperatorSupport(TestCase):
def test_supported_node_target(self):
class TestModule(nn.Module):
def __init__(self):
@ -76,3 +76,6 @@ class TestTRTOperatorSupport(unittest.TestCase):
for node in traced_mod.graph.nodes:
if node.target == acc_ops.quantize_per_tensor:
self.assertTrue(op_support.is_node_supported(mod, node))
if __name__ == '__main__':
run_tests()

View File

@ -1,7 +1,6 @@
# Owner(s): ["oncall: fx"]
import operator
import unittest
import torch # isort:skip
import torch.fx # isort:skip
@ -12,6 +11,7 @@ import torch.fx.passes.shape_prop as shape_prop
from torch.fx.experimental.fx2trt.tools.trt_splitter import TRTSplitter
from torch.fx.passes import splitter_base
from torch.fx.experimental.fx_acc import acc_tracer
from torch.testing._internal.common_utils import TestCase, run_tests
ERROR_MSG_NO_ACC_MODULE = "FX split failed: Did not find any ACC submodule!"
@ -61,7 +61,7 @@ def find_call_targets(module: torch.fx.GraphModule):
# We test both FxNetSplitOnly and FxNetSplitter here, since they share most
# functionalities. The only difference is that FxNetSplitOnly does not implement
# split_preview() related functions, while FxNetSplitter does.
class TestSplit(unittest.TestCase):
class TestSplit(TestCase):
def test_demo(self):
"""
==> b ==>
@ -643,7 +643,7 @@ class TestSplit(unittest.TestCase):
test_splitter(splitter)
class TestSplitComplexGraph(unittest.TestCase):
class TestSplitComplexGraph(TestCase):
"""
a ======
// \\ \\
@ -753,7 +753,7 @@ class TestSplitComplexGraph(unittest.TestCase):
test_splitter(splitter)
class TestSplitNonTensorEdges(unittest.TestCase):
class TestSplitNonTensorEdges(TestCase):
"""
a (relu)
// \\
@ -963,7 +963,7 @@ class TestSplitNonTensorEdges(unittest.TestCase):
test_splitter(splitter)
class TestAccNodesFinder(unittest.TestCase):
class TestAccNodesFinder(TestCase):
def test_acc_nodes_finder_1(self):
"""
y ------------->
@ -1007,7 +1007,7 @@ class TestAccNodesFinder(unittest.TestCase):
self.assertEqual(set(), acc_nodes, "Shouldn't have ACC nodes")
class TestAccFusionsFinder(unittest.TestCase):
class TestAccFusionsFinder(TestCase):
"""
x
/ \\
@ -1147,3 +1147,6 @@ class TestAccFusionsFinder(unittest.TestCase):
def op_support_with_support_dict(support_dict: dict) -> op_support.OperatorSupportBase:
return op_support.OperatorSupport(support_dict)
if __name__ == '__main__':
run_tests()

View File

@ -893,7 +893,7 @@ def get_selected_tests(options):
# Only run fx2trt test with specified option argument
if options.fx2trt_tests:
selected_tests = list(
filter(lambda test_name: "fx2trt" in test_name, selected_tests)
filter(lambda test_name: test_name in FX2TRT_TESTS, selected_tests)
)
else:
options.exclude.extend(FX2TRT_TESTS)

View File

@ -38,6 +38,7 @@ def fetch_attr(mod, target):
@unittest.skipIf(not torch.cuda.is_available(), "Skip because CUDA is not available")
class TRTTestCase(TestCase):
def setUp(self):
super().setUp()
torch.manual_seed(3)
def run_test(self, mod, inputs, expected_ops, unexpected_ops, interpreter, rtol, atol):