[BE] Remove CUDA 11 artifacts. Fix Check Binary workflow (#155555)

Please see: https://github.com/pytorch/pytorch/issues/147383

1. Remove CUDA 11 build and test artifacts. One place CUDA 12.4
2. Fix Check Binary Workflow to use Stable Cuda version variable rather then hardcoded one

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155555
Approved by: https://github.com/malfet, https://github.com/Skylion007
This commit is contained in:
atalman
2025-06-10 21:32:08 +00:00
committed by PyTorch MergeBot
parent 40fefe2871
commit 7a03b0d2ca
19 changed files with 10 additions and 286 deletions

View File

@ -52,10 +52,6 @@ ENV CUDA_VERSION=${CUDA_VERSION}
# Make things in our path by default
ENV PATH=/usr/local/cuda-${CUDA_VERSION}/bin:$PATH
FROM cuda as cuda11.8
RUN bash ./install_cuda.sh 11.8
ENV DESIRED_CUDA=11.8
FROM cuda as cuda12.6
RUN bash ./install_cuda.sh 12.6
ENV DESIRED_CUDA=12.6

View File

@ -30,16 +30,6 @@ install_ubuntu() {
maybe_libomp_dev=""
fi
# HACK: UCC testing relies on libnccl library from NVIDIA repo, and version 2.16 crashes
# See https://github.com/pytorch/pytorch/pull/105260#issuecomment-1673399729
# TODO: Eliminate this hack, we should not relay on apt-get installation
# See https://github.com/pytorch/pytorch/issues/144768
if [[ "$UBUNTU_VERSION" == "20.04"* && "$CUDA_VERSION" == "11.8"* ]]; then
maybe_libnccl_dev="libnccl2=2.15.5-1+cuda11.8 libnccl-dev=2.15.5-1+cuda11.8 --allow-downgrades --allow-change-held-packages"
else
maybe_libnccl_dev=""
fi
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
@ -68,7 +58,6 @@ install_ubuntu() {
libasound2-dev \
libsndfile-dev \
${maybe_libomp_dev} \
${maybe_libnccl_dev} \
software-properties-common \
wget \
sudo \

View File

@ -40,20 +40,6 @@ function install_cudnn {
rm -rf tmp_cudnn
}
function install_118 {
CUDNN_VERSION=9.1.0.70
echo "Installing CUDA 11.8 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.4.0"
install_cuda 11.8.0 cuda_11.8.0_520.61.05_linux
install_cudnn 11 $CUDNN_VERSION
CUDA_VERSION=11.8 bash install_nccl.sh
CUDA_VERSION=11.8 bash install_cusparselt.sh
ldconfig
}
function install_126 {
CUDNN_VERSION=9.5.1.17
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.7.1"
@ -84,37 +70,6 @@ function install_129 {
ldconfig
}
function prune_118 {
echo "Pruning CUDA 11.8 and cuDNN"
#####################################################################################
# CUDA 11.8 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-11.8/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-11.8/lib64"
export GENCODE="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
# all CUDA libs except CuDNN and CuBLAS (cudnn and cublas need arch 3.7 included)
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 11.8 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-11.8/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2022.3.0 $CUDA_BASE/nsight-systems-2022.4.2/
}
function prune_126 {
echo "Pruning CUDA 12.6"
#####################################################################################
@ -169,8 +124,6 @@ function install_128 {
while test $# -gt 0
do
case "$1" in
11.8) install_118; prune_118
;;
12.6|12.6.*) install_126; prune_126
;;
12.8|12.8.*) install_128;

View File

@ -13,9 +13,6 @@ if [[ ${CUDA_VERSION:0:4} =~ ^12\.[5-9]$ ]]; then
fi
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.7.1.0-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-${arch_path}/${CUSPARSELT_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "11.8" ]]; then
CUSPARSELT_NAME="libcusparse_lt-linux-x86_64-0.4.0.7-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/${CUSPARSELT_NAME}.tar.xz
else
echo "Not sure which libcusparselt version to install for this ${CUDA_VERSION}"
fi

View File

@ -54,16 +54,6 @@ COPY ./ci_commit_pins/nccl-cu* /ci_commit_pins/
COPY ./common/install_cusparselt.sh install_cusparselt.sh
ENV CUDA_HOME /usr/local/cuda
FROM cuda as cuda11.8
RUN bash ./install_cuda.sh 11.8
RUN bash ./install_magma.sh 11.8
RUN ln -sf /usr/local/cuda-11.8 /usr/local/cuda
FROM cuda as cuda12.4
RUN bash ./install_cuda.sh 12.4
RUN bash ./install_magma.sh 12.4
RUN ln -sf /usr/local/cuda-12.4 /usr/local/cuda
FROM cuda as cuda12.6
RUN bash ./install_cuda.sh 12.6
RUN bash ./install_magma.sh 12.6

View File

@ -1,7 +1,7 @@
SHELL=/usr/bin/env bash
DOCKER_CMD ?= docker
DESIRED_CUDA ?= 11.8
DESIRED_CUDA ?= 12.8
DESIRED_CUDA_SHORT = $(subst .,,$(DESIRED_CUDA))
PACKAGE_NAME = magma-cuda
CUDA_ARCH_LIST ?= -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90
@ -19,7 +19,6 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
all: magma-cuda129
all: magma-cuda128
all: magma-cuda126
all: magma-cuda118
.PHONY:
clean:
@ -42,9 +41,3 @@ magma-cuda128:
magma-cuda126: DESIRED_CUDA := 12.6
magma-cuda126:
$(DOCKER_RUN)
.PHONY: magma-cuda118
magma-cuda118: DESIRED_CUDA := 11.8
magma-cuda118: CUDA_ARCH_LIST += -gencode arch=compute_37,code=sm_37
magma-cuda118:
$(DOCKER_RUN)

View File

@ -62,10 +62,6 @@ case ${CUDA_VERSION} in
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
11.8)
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};3.7;9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
*)
echo "unknown cuda version $CUDA_VERSION"
exit 1
@ -181,85 +177,6 @@ if [[ $CUDA_VERSION == 12* ]]; then
export USE_CUDA_STATIC_LINK=0
export USE_CUPTI_SO=1
fi
elif [[ $CUDA_VERSION == "11.8" ]]; then
export USE_STATIC_CUDNN=0
# Turn USE_CUFILE off for CUDA 11.8 since nvidia-cufile-cu11 and 1.9.0.20 are
# not available in PYPI
export USE_CUFILE=0
# Try parallelizing nvcc as well
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
# Bundle ptxas into the wheel, see https://github.com/pytorch/pytorch/pull/119750
export BUILD_BUNDLE_PTXAS=1
# CUDA 11.8 have to ship the libcusparseLt.so.0 with the binary
# since nvidia-cusparselt-cu11 is not available in PYPI
if [[ $USE_CUSPARSELT == "1" ]]; then
DEPS_SONAME+=(
"libcusparseLt.so.0"
)
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcusparseLt.so.0"
)
fi
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling with cudnn and cublas."
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcudnn_adv.so.9"
"/usr/local/cuda/lib64/libcudnn_cnn.so.9"
"/usr/local/cuda/lib64/libcudnn_graph.so.9"
"/usr/local/cuda/lib64/libcudnn_ops.so.9"
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9"
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9"
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9"
"/usr/local/cuda/lib64/libcudnn.so.9"
"/usr/local/cuda/lib64/libcublas.so.11"
"/usr/local/cuda/lib64/libcublasLt.so.11"
"/usr/local/cuda/lib64/libcudart.so.11.0"
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libnvrtc.so.11.2" # this is not a mistake, it links to more specific cuda version
"/usr/local/cuda/lib64/libnvrtc-builtins.so.11.8"
)
DEPS_SONAME+=(
"libcudnn_adv.so.9"
"libcudnn_cnn.so.9"
"libcudnn_graph.so.9"
"libcudnn_ops.so.9"
"libcudnn_engines_runtime_compiled.so.9"
"libcudnn_engines_precompiled.so.9"
"libcudnn_heuristic.so.9"
"libcudnn.so.9"
"libcublas.so.11"
"libcublasLt.so.11"
"libcudart.so.11.0"
"libnvToolsExt.so.1"
"libnvrtc.so.11.2"
"libnvrtc-builtins.so.11.8"
)
else
echo "Using nvidia libs from pypi."
CUDA_RPATHS=(
'$ORIGIN/../../nvidia/cublas/lib'
'$ORIGIN/../../nvidia/cuda_cupti/lib'
'$ORIGIN/../../nvidia/cuda_nvrtc/lib'
'$ORIGIN/../../nvidia/cuda_runtime/lib'
'$ORIGIN/../../nvidia/cudnn/lib'
'$ORIGIN/../../nvidia/cufft/lib'
'$ORIGIN/../../nvidia/curand/lib'
'$ORIGIN/../../nvidia/cusolver/lib'
'$ORIGIN/../../nvidia/cusparse/lib'
'$ORIGIN/../../nvidia/nccl/lib'
'$ORIGIN/../../nvidia/nvtx/lib'
)
CUDA_RPATHS=$(IFS=: ; echo "${CUDA_RPATHS[*]}")
export C_SO_RPATH=$CUDA_RPATHS':$ORIGIN:$ORIGIN/lib'
export LIB_SO_RPATH=$CUDA_RPATHS':$ORIGIN'
export FORCE_RPATH="--force-rpath"
export USE_STATIC_NCCL=0
export ATEN_STATIC_CUDA=0
export USE_CUDA_STATIC_LINK=0
export USE_CUPTI_SO=1
fi
else
echo "Unknown cuda version $CUDA_VERSION"
exit 1

View File

@ -313,7 +313,7 @@ if [[ "$(uname)" == 'Linux' && "$PACKAGE_TYPE" == 'manywheel' ]]; then
# Please see issue for reference: https://github.com/pytorch/pytorch/issues/152426
if [[ "$(uname -m)" == "s390x" ]]; then
cxx_abi="19"
elif [[ "$DESIRED_CUDA" != 'cu118' && "$DESIRED_CUDA" != 'xpu' && "$DESIRED_CUDA" != 'rocm'* ]]; then
elif [[ "$DESIRED_CUDA" != 'xpu' && "$DESIRED_CUDA" != 'rocm'* ]]; then
cxx_abi="18"
else
cxx_abi="16"

View File

@ -1,59 +0,0 @@
@echo off
set MODULE_NAME=pytorch
IF NOT EXIST "setup.py" IF NOT EXIST "%MODULE_NAME%" (
call internal\clone.bat
cd %~dp0
) ELSE (
call internal\clean.bat
)
IF ERRORLEVEL 1 goto :eof
call internal\check_deps.bat
IF ERRORLEVEL 1 goto :eof
REM Check for optional components
set USE_CUDA=
set CMAKE_GENERATOR=Visual Studio 15 2017 Win64
IF "%NVTOOLSEXT_PATH%"=="" (
IF EXIST "C:\Program Files\NVIDIA Corporation\NvToolsExt\lib\x64\nvToolsExt64_1.lib" (
set NVTOOLSEXT_PATH=C:\Program Files\NVIDIA Corporation\NvToolsExt
) ELSE (
echo NVTX ^(Visual Studio Extension ^for CUDA^) ^not installed, failing
exit /b 1
)
)
IF "%CUDA_PATH_V118%"=="" (
IF EXIST "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin\nvcc.exe" (
set "CUDA_PATH_V118=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8"
) ELSE (
echo CUDA 11.8 not found, failing
exit /b 1
)
)
IF "%BUILD_VISION%" == "" (
set TORCH_CUDA_ARCH_LIST=3.7+PTX;5.0;6.0;6.1;7.0;7.5;8.0;8.6;9.0
set TORCH_NVCC_FLAGS=-Xfatbin -compress-all
) ELSE (
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90
)
set "CUDA_PATH=%CUDA_PATH_V118%"
set "PATH=%CUDA_PATH_V118%\bin;%PATH%"
:optcheck
call internal\check_opts.bat
IF ERRORLEVEL 1 goto :eof
if exist "%NIGHTLIES_PYTORCH_ROOT%" cd %NIGHTLIES_PYTORCH_ROOT%\..
call %~dp0\internal\copy.bat
IF ERRORLEVEL 1 goto :eof
call %~dp0\internal\setup.bat
IF ERRORLEVEL 1 goto :eof

View File

@ -23,7 +23,6 @@ set CUDNN_LIB_FOLDER="lib\x64"
:: Skip all of this if we already have cuda installed
if exist "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v%CUDA_VERSION_STR%\bin\nvcc.exe" goto set_cuda_env_vars
if %CUDA_VER% EQU 118 goto cuda118
if %CUDA_VER% EQU 124 goto cuda124
if %CUDA_VER% EQU 126 goto cuda126
if %CUDA_VER% EQU 128 goto cuda128
@ -31,31 +30,6 @@ if %CUDA_VER% EQU 128 goto cuda128
echo CUDA %CUDA_VERSION_STR% is not supported
exit /b 1
:cuda118
set CUDA_INSTALL_EXE=cuda_11.8.0_522.06_windows.exe
if not exist "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" (
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDA_SETUP_FILE=%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
set "ARGS=cuda_profiler_api_11.8 thrust_11.8 nvcc_11.8 cuobjdump_11.8 nvprune_11.8 nvprof_11.8 cupti_11.8 cublas_11.8 cublas_dev_11.8 cudart_11.8 cufft_11.8 cufft_dev_11.8 curand_11.8 curand_dev_11.8 cusolver_11.8 cusolver_dev_11.8 cusparse_11.8 cusparse_dev_11.8 npp_11.8 npp_dev_11.8 nvrtc_11.8 nvrtc_dev_11.8 nvml_dev_11.8 nvtx_11.8"
)
set CUDNN_FOLDER=cudnn-windows-x86_64-9.5.0.50_cuda11-archive
set CUDNN_LIB_FOLDER="lib"
set "CUDNN_INSTALL_ZIP=%CUDNN_FOLDER%.zip"
if not exist "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" (
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDNN_SETUP_FILE=%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
)
@REM cuDNN 8.3+ required zlib to be installed on the path
echo Installing ZLIB dlls
curl -k -L "http://s3.amazonaws.com/ossci-windows/zlib123dllx64.zip" --output "%SRC_DIR%\temp_build\zlib123dllx64.zip"
7z x "%SRC_DIR%\temp_build\zlib123dllx64.zip" -o"%SRC_DIR%\temp_build\zlib"
xcopy /Y "%SRC_DIR%\temp_build\zlib\dll_x64\*.dll" "C:\Windows\System32"
goto cuda_common
:cuda126

View File

@ -40,19 +40,6 @@ CUDA_AARCH64_ARCHES = ["12.8-aarch64"]
PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"11.8": (
"nvidia-cuda-nvrtc-cu11==11.8.89; platform_system == 'Linux' and platform_machine == 'x86_64' | " # noqa: B950
"nvidia-cuda-runtime-cu11==11.8.89; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-cupti-cu11==11.8.87; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cudnn-cu11==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cublas-cu11==11.11.3.6; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufft-cu11==10.9.0.58; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-curand-cu11==10.3.0.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu11==11.4.1.48; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu11==11.7.5.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu11==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu11==11.8.86; platform_system == 'Linux' and platform_machine == 'x86_64'"
),
"12.6": (
"nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
@ -413,4 +400,3 @@ def generate_wheels_matrix(
validate_nccl_dep_consistency("12.8")
validate_nccl_dep_consistency("12.6")
validate_nccl_dep_consistency("11.8")

View File

@ -36,7 +36,7 @@ jobs:
runs-on: linux.9xlarge.ephemeral
strategy:
matrix:
tag: ["cuda11.8", "cuda12.6", "cuda12.8", "cuda12.9", "rocm6.3", "rocm6.4", "cpu"]
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "rocm6.3", "rocm6.4", "cpu"]
steps:
- name: Build docker image
uses: pytorch/pytorch/.github/actions/binary-docker-build@main

View File

@ -50,7 +50,6 @@ jobs:
include: [
{ tag: "cuda12.8" },
{ tag: "cuda12.6" },
{ tag: "cuda11.8" },
{ tag: "rocm6.3" },
{ tag: "rocm6.4" },
{ tag: "cpu" },

View File

@ -34,7 +34,7 @@ jobs:
id-token: write
strategy:
matrix:
cuda_version: ["129", "128", "126", "118"]
cuda_version: ["129", "128", "126"]
steps:
- name: Checkout PyTorch
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2

View File

@ -49,7 +49,6 @@ jobs:
include: [
{ name: "manylinux2_28-builder", tag: "cuda12.8", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cuda12.6", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cuda11.8", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.3", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },

View File

@ -34,7 +34,9 @@ jobs:
docker-image: python:3.11
docker-build-dir: "skip-docker-build"
script: |
STABLE_CUDA_VERSION=$(python3 .github/scripts/get_ci_variable.py --cuda-stable-version)
CUDA_VERSION_NODOT=$(echo ${STABLE_CUDA_VERSION} | tr -d '.')
pushd .ci/pytorch/
pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu124
DESIRED_PYTHON=3.11 DESIRED_CUDA=cu124 PACKAGE_TYPE=manywheel ./check_binary.sh
pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu${CUDA_VERSION_NODOT}
DESIRED_PYTHON=3.11 DESIRED_CUDA=cu${CUDA_VERSION_NODOT} PACKAGE_TYPE=manywheel ./check_binary.sh
popd

View File

@ -53,7 +53,6 @@ from torch.profiler._pattern_matcher import (
SynchronizedDataLoaderPattern,
)
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_device_type import skipCUDAVersionIn
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_ARM64,
@ -102,7 +101,6 @@ except ModuleNotFoundError:
@unittest.skipIf(IS_WINDOWS, "Test is flaky on Windows")
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
class TestProfilerCUDA(TestCase):
@skipCUDAVersionIn([(11, 5)]) # https://github.com/pytorch/pytorch/issues/69023
def test_mem_leak(self):
"""Checks that there's no memory leak when using profiler with CUDA"""
t = torch.rand(1, 1).cuda()

View File

@ -29,7 +29,7 @@ from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, has_cusolver, has_hipsolver,
onlyCPU, skipCUDAIf, skipCUDAIfNoMagma, skipCPUIfNoLapack, precisionOverride,
skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, onlyNativeDeviceTypes, dtypesIfCUDA,
onlyCUDA, skipCUDAVersionIn, skipMeta, skipCUDAIfNoCusolver, skipCUDAIfNotRocm, skipCUDAIfRocmVersionLessThan,
onlyCUDA, skipMeta, skipCUDAIfNoCusolver, skipCUDAIfNotRocm, skipCUDAIfRocmVersionLessThan,
dtypesIfMPS, largeTensorTest)
from torch.testing import make_tensor
from torch.testing._internal.common_dtype import (
@ -3713,7 +3713,6 @@ class TestLinalg(TestCase):
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@skipCUDAVersionIn([(11, 6), (11, 7)]) # https://github.com/pytorch/pytorch/issues/75391
@dtypes(*floating_and_complex_types())
def test_matrix_rank_empty(self, device, dtype):
matrix_rank = torch.linalg.matrix_rank

View File

@ -16,8 +16,7 @@ from torch.testing._internal.common_dtype import (
floating_types, floating_and_complex_types_and, get_all_fp_dtypes)
from torch.testing._internal.common_device_type import (
_TestParametrizer, _update_param_kwargs, expectedFailureMPS, toleranceOverride, tol,
skipCUDAIfRocm, precisionOverride, skipMeta, skipMPS,
skipCUDAVersionIn)
skipCUDAIfRocm, precisionOverride, skipMeta, skipMPS)
from torch.testing._internal.common_methods_invocations import DecorateInfo
from torch.testing._internal.common_nn import (
cosineembeddingloss_reference, cross_entropy_loss_reference, ctcloss_reference,
@ -3172,14 +3171,6 @@ rnn_gru_lstm_module_info_decorators = (
DecorateInfo(
unittest.expectedFailure, "TestModule", "test_non_contiguous_tensors",
active_if=(TEST_CUDNN and TEST_WITH_ROCM), dtypes=(torch.float,), device_type='cuda'
),
DecorateInfo(
skipCUDAVersionIn([(11, 7)]), "TestExpandedWeightModule", "test_module",
device_type='cuda'
),
DecorateInfo(
skipCUDAVersionIn([(11, 7)]), "TestDecomp", "test_rnn_decomp_module",
device_type='cuda'
)
)