Convert to markdown: distributed.tensor.parallel.rst, distributed.tensor.rst, distributions.rst, dlpack.rst (#155297)

Fixes #155019

## Description
Convert to markdown: distributed.tensor.parallel.rst, distributed.tensor.rst, distributions.rst, dlpack.rst

## Checklist
- [X] dlpack.rst converted to dlpack.md --> [Preview](https://docs-preview.pytorch.org/pytorch/pytorch/155297/dlpack.html)
- [X] distributions.rst converted to distributions.md --> [Preview](https://docs-preview.pytorch.org/pytorch/pytorch/155297/distributions.html)
- [X] distributed.tensor.rst converted to distributed.tensor.md --> [Preview](https://docs-preview.pytorch.org/pytorch/pytorch/155297/distributed.tensor.html)
- [X] distributed.tensor.parallel.rst converted to distributed.tensor.parallel.md --> [Preview](https://docs-preview.pytorch.org/pytorch/pytorch/155297/distributed.tensor.parallel.html)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155297
Approved by: https://github.com/svekars

Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
This commit is contained in:
ggsmith842
2025-06-13 22:08:33 +00:00
committed by PyTorch MergeBot
parent 764c02b78b
commit 799443605b
6 changed files with 678 additions and 364 deletions

View File

@ -0,0 +1,250 @@
:::{currentmodule} torch.distributed.tensor
:::
# torch.distributed.tensor
:::{note}
`torch.distributed.tensor` is currently in alpha state and under
development, we are committing backward compatibility for the most APIs listed
in the doc, but there might be API changes if necessary.
:::
## PyTorch DTensor (Distributed Tensor)
PyTorch DTensor offers simple and flexible tensor sharding primitives that transparently handles distributed
logic, including sharded storage, operator computation and collective communications across devices/hosts.
`DTensor` could be used to build different paralleism solutions and support sharded state_dict representation
when working with multi-dimensional sharding.
Please see examples from the PyTorch native parallelism solutions that are built on top of `DTensor`:
- [Tensor Parallel](https://pytorch.org/docs/main/distributed.tensor.parallel.html)
- [FSDP2](https://github.com/pytorch/torchtitan/blob/main/docs/fsdp.md)
```{eval-rst}
.. automodule:: torch.distributed.tensor
```
{class}`DTensor` follows the SPMD (single program, multiple data) programming model to empower users to
write distributed program as if it's a **single-device program with the same convergence property**. It
provides a uniform tensor sharding layout (DTensor Layout) through specifying the {class}`DeviceMesh`
and {class}`Placement`:
- {class}`DeviceMesh` represents the device topology and the communicators of the cluster using
an n-dimensional array.
- {class}`Placement` describes the sharding layout of the logical tensor on the {class}`DeviceMesh`.
DTensor supports three types of placements: {class}`Shard`, {class}`Replicate` and {class}`Partial`.
### DTensor Class APIs
```{eval-rst}
.. currentmodule:: torch.distributed.tensor
```
{class}`DTensor` is a `torch.Tensor` subclass. This means once a {class}`DTensor` is created, it could be
used in very similar way to `torch.Tensor`, including running different types of PyTorch operators as if
running them in a single device, allowing proper distributed computation for PyTorch operators.
In addition to existing `torch.Tensor` methods, it also offers a set of additional methods to interact with
`torch.Tensor`, `redistribute` the DTensor Layout to a new DTensor, get the full tensor content
on all devices, etc.
```{eval-rst}
.. autoclass:: DTensor
:members: from_local, to_local, full_tensor, redistribute, device_mesh, placements
:member-order: groupwise
:special-members: __create_chunk_list__
```
### DeviceMesh as the distributed communicator
```{eval-rst}
.. currentmodule:: torch.distributed.device_mesh
```
{class}`DeviceMesh` was built from DTensor as the abstraction to describe cluster's device topology and represent
multi-dimensional communicators (on top of `ProcessGroup`). To see the details of how to create/use a DeviceMesh,
please refer to the [DeviceMesh recipe](https://pytorch.org/tutorials/recipes/distributed_device_mesh.html).
### DTensor Placement Types
```{eval-rst}
.. automodule:: torch.distributed.tensor.placement_types
```
```{eval-rst}
.. currentmodule:: torch.distributed.tensor.placement_types
```
DTensor supports the following types of {class}`Placement` on each {class}`DeviceMesh` dimension:
```{eval-rst}
.. autoclass:: Shard
:members:
:undoc-members:
```
```{eval-rst}
.. autoclass:: Replicate
:members:
:undoc-members:
```
```{eval-rst}
.. autoclass:: Partial
:members:
:undoc-members:
```
```{eval-rst}
.. autoclass:: Placement
:members:
:undoc-members:
```
(create_dtensor)=
## Different ways to create a DTensor
```{eval-rst}
.. currentmodule:: torch.distributed.tensor
```
There're three ways to construct a {class}`DTensor`:
: - {meth}`distribute_tensor` creates a {class}`DTensor` from a logical or "global" `torch.Tensor` on
each rank. This could be used to shard the leaf `torch.Tensor` s (i.e. model parameters/buffers
and inputs).
- {meth}`DTensor.from_local` creates a {class}`DTensor` from a local `torch.Tensor` on each rank, which can
be used to create {class}`DTensor` from a non-leaf `torch.Tensor` s (i.e. intermediate activation
tensors during forward/backward).
- DTensor provides dedicated tensor factory functions (e.g. {meth}`empty`, {meth}`ones`, {meth}`randn`, etc.)
to allow different {class}`DTensor` creations by directly specifying the {class}`DeviceMesh` and
{class}`Placement`. Compare to {meth}`distribute_tensor`, this could directly materializing the sharded memory
on device, instead of performing sharding after initializing the logical Tensor memory.
### Create DTensor from a logical torch.Tensor
The SPMD (single program, multiple data) programming model in `torch.distributed` launches multiple processes
(i.e. via `torchrun`) to execute the same program, this means that the model inside the program would be
initialized on different processes first (i.e. the model might be initialized on CPU, or meta device, or directly
on GPU if enough memory).
`DTensor` offers a {meth}`distribute_tensor` API that could shard the model weights or Tensors to `DTensor` s,
where it would create a DTensor from the "logical" Tensor on each process. This would empower the created
`DTensor` s to comply with the single device semantic, which is critical for **numerical correctness**.
```{eval-rst}
.. autofunction:: distribute_tensor
```
Along with {meth}`distribute_tensor`, DTensor also offers a {meth}`distribute_module` API to allow easier
sharding on the {class}`nn.Module` level
```{eval-rst}
.. autofunction:: distribute_module
```
### DTensor Factory Functions
DTensor also provides dedicated tensor factory functions to allow creating {class}`DTensor` directly
using torch.Tensor like factory function APIs (i.e. torch.ones, torch.empty, etc), by additionally
specifying the {class}`DeviceMesh` and {class}`Placement` for the {class}`DTensor` created:
```{eval-rst}
.. autofunction:: zeros
```
```{eval-rst}
.. autofunction:: ones
```
```{eval-rst}
.. autofunction:: empty
```
```{eval-rst}
.. autofunction:: full
```
```{eval-rst}
.. autofunction:: rand
```
```{eval-rst}
.. autofunction:: randn
```
## Debugging
```{eval-rst}
.. automodule:: torch.distributed.tensor.debug
```
```{eval-rst}
.. currentmodule:: torch.distributed.tensor.debug
```
### Logging
When launching the program, you can turn on additional logging using the `TORCH_LOGS` environment variable from
[torch._logging](https://pytorch.org/docs/main/logging.html#module-torch._logging) :
- `TORCH_LOGS=+dtensor` will display `logging.DEBUG` messages and all levels above it.
- `TORCH_LOGS=dtensor` will display `logging.INFO` messages and above.
- `TORCH_LOGS=-dtensor` will display `logging.WARNING` messages and above.
### Debugging Tools
To debug the program that applied DTensor, and understand more details about what collectives happened under the
hood, DTensor provides a {class}`CommDebugMode`:
```{eval-rst}
.. autoclass:: CommDebugMode
:members:
:undoc-members:
```
To visualize the sharding of a DTensor that have less than 3 dimensions, DTensor provides {meth}`visualize_sharding`:
```{eval-rst}
.. autofunction:: visualize_sharding
```
## Experimental Features
`DTensor` also provides a set of experimental features. These features are either in prototyping stage, or the basic
functionality is done and but looking for user feedbacks. Please submit a issue to PyTorch if you have feedbacks to
these features.
```{eval-rst}
.. automodule:: torch.distributed.tensor.experimental
```
```{eval-rst}
.. currentmodule:: torch.distributed.tensor.experimental
```
```{eval-rst}
.. autofunction:: context_parallel
```
```{eval-rst}
.. autofunction:: local_map
```
```{eval-rst}
.. autofunction:: register_sharding
```
% modules that are missing docs, add the doc later when necessary
```{eval-rst}
.. py:module:: torch.distributed.tensor.device_mesh
```

View File

@ -0,0 +1,92 @@
:::{role} hidden
:class: hidden-section
:::
# Tensor Parallelism - torch.distributed.tensor.parallel
Tensor Parallelism(TP) is built on top of the PyTorch DistributedTensor
(DTensor)[https://github.com/pytorch/pytorch/blob/main/torch/distributed/tensor/README.md]
and provides different parallelism styles: Colwise, Rowwise, and Sequence Parallelism.
:::{warning}
Tensor Parallelism APIs are experimental and subject to change.
:::
The entrypoint to parallelize your `nn.Module` using Tensor Parallelism is:
```{eval-rst}
.. automodule:: torch.distributed.tensor.parallel
```
```{eval-rst}
.. currentmodule:: torch.distributed.tensor.parallel
```
```{eval-rst}
.. autofunction:: parallelize_module
```
Tensor Parallelism supports the following parallel styles:
```{eval-rst}
.. autoclass:: torch.distributed.tensor.parallel.ColwiseParallel
:members:
:undoc-members:
```
```{eval-rst}
.. autoclass:: torch.distributed.tensor.parallel.RowwiseParallel
:members:
:undoc-members:
```
```{eval-rst}
.. autoclass:: torch.distributed.tensor.parallel.SequenceParallel
:members:
:undoc-members:
```
To simply configure the nn.Module's inputs and outputs with DTensor layouts
and perform necessary layout redistributions, without distribute the module
parameters to DTensors, the following `ParallelStyle` s can be used in
the `parallelize_plan` when calling `parallelize_module`:
```{eval-rst}
.. autoclass:: torch.distributed.tensor.parallel.PrepareModuleInput
:members:
:undoc-members:
```
```{eval-rst}
.. autoclass:: torch.distributed.tensor.parallel.PrepareModuleOutput
:members:
:undoc-members:
```
```{eval-rst}
.. autoclass:: torch.distributed.tensor.parallel.PrepareModuleInputOutput
:members:
:undoc-members:
```
:::{note}
when using the `Shard(dim)` as the input/output layouts for the above
`ParallelStyle` s, we assume the input/output activation tensors are evenly sharded on
the tensor dimension `dim` on the `DeviceMesh` that TP operates on. For instance,
since `RowwiseParallel` accepts input that is sharded on the last dimension, it assumes
the input tensor has already been evenly sharded on the last dimension. For the case of uneven sharded activation tensors, one could pass in DTensor directly to the partitioned modules, and use `use_local_output=False` to return DTensor after each `ParallelStyle`, where DTensor could track the uneven sharding information.
:::
For models like Transformer, we recommend users to use `ColwiseParallel`
and `RowwiseParallel` together in the parallelize_plan for achieve the desired
sharding for the entire model (i.e. Attention and MLP).
Parallelized cross-entropy loss computation (loss parallelism), is supported via the following context manager:
```{eval-rst}
.. autofunction:: torch.distributed.tensor.parallel.loss_parallel
```
:::{warning}
The loss_parallel API is experimental and subject to change.
:::

View File

@ -1,71 +0,0 @@
.. role:: hidden
:class: hidden-section
Tensor Parallelism - torch.distributed.tensor.parallel
======================================================
Tensor Parallelism(TP) is built on top of the PyTorch DistributedTensor
(`DTensor <https://github.com/pytorch/pytorch/blob/main/torch/distributed/tensor/README.md>`__)
and provides different parallelism styles: Colwise, Rowwise, and Sequence Parallelism.
.. warning ::
Tensor Parallelism APIs are experimental and subject to change.
The entrypoint to parallelize your ``nn.Module`` using Tensor Parallelism is:
.. automodule:: torch.distributed.tensor.parallel
.. currentmodule:: torch.distributed.tensor.parallel
.. autofunction:: parallelize_module
Tensor Parallelism supports the following parallel styles:
.. autoclass:: torch.distributed.tensor.parallel.ColwiseParallel
:members:
:undoc-members:
.. autoclass:: torch.distributed.tensor.parallel.RowwiseParallel
:members:
:undoc-members:
.. autoclass:: torch.distributed.tensor.parallel.SequenceParallel
:members:
:undoc-members:
To simply configure the nn.Module's inputs and outputs with DTensor layouts
and perform necessary layout redistributions, without distribute the module
parameters to DTensors, the following ``ParallelStyle`` s can be used in
the ``parallelize_plan`` when calling ``parallelize_module``:
.. autoclass:: torch.distributed.tensor.parallel.PrepareModuleInput
:members:
:undoc-members:
.. autoclass:: torch.distributed.tensor.parallel.PrepareModuleOutput
:members:
:undoc-members:
.. autoclass:: torch.distributed.tensor.parallel.PrepareModuleInputOutput
:members:
:undoc-members:
.. note:: when using the ``Shard(dim)`` as the input/output layouts for the above
``ParallelStyle`` s, we assume the input/output activation tensors are evenly sharded on
the tensor dimension ``dim`` on the ``DeviceMesh`` that TP operates on. For instance,
since ``RowwiseParallel`` accepts input that is sharded on the last dimension, it assumes
the input tensor has already been evenly sharded on the last dimension. For the case of uneven
sharded activation tensors, one could pass in DTensor directly to the partitioned modules,
and use ``use_local_output=False`` to return DTensor after each ``ParallelStyle``, where
DTensor could track the uneven sharding information.
For models like Transformer, we recommend users to use ``ColwiseParallel``
and ``RowwiseParallel`` together in the parallelize_plan for achieve the desired
sharding for the entire model (i.e. Attention and MLP).
Parallelized cross-entropy loss computation (loss parallelism), is supported via the following context manager:
.. autofunction:: torch.distributed.tensor.parallel.loss_parallel
.. warning ::
The loss_parallel API is experimental and subject to change.

View File

@ -1,195 +0,0 @@
.. currentmodule:: torch.distributed.tensor
torch.distributed.tensor
===========================
.. note::
``torch.distributed.tensor`` is currently in alpha state and under
development, we are committing backward compatibility for the most APIs listed
in the doc, but there might be API changes if necessary.
PyTorch DTensor (Distributed Tensor)
---------------------------------------
PyTorch DTensor offers simple and flexible tensor sharding primitives that transparently handles distributed
logic, including sharded storage, operator computation and collective communications across devices/hosts.
``DTensor`` could be used to build different paralleism solutions and support sharded state_dict representation
when working with multi-dimensional sharding.
Please see examples from the PyTorch native parallelism solutions that are built on top of ``DTensor``:
* `Tensor Parallel <https://pytorch.org/docs/main/distributed.tensor.parallel.html>`__
* `FSDP2 <https://github.com/pytorch/torchtitan/blob/main/docs/fsdp.md>`__
.. automodule:: torch.distributed.tensor
:class:`DTensor` follows the SPMD (single program, multiple data) programming model to empower users to
write distributed program as if it's a **single-device program with the same convergence property**. It
provides a uniform tensor sharding layout (DTensor Layout) through specifying the :class:`DeviceMesh`
and :class:`Placement`:
- :class:`DeviceMesh` represents the device topology and the communicators of the cluster using
an n-dimensional array.
- :class:`Placement` describes the sharding layout of the logical tensor on the :class:`DeviceMesh`.
DTensor supports three types of placements: :class:`Shard`, :class:`Replicate` and :class:`Partial`.
DTensor Class APIs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. currentmodule:: torch.distributed.tensor
:class:`DTensor` is a ``torch.Tensor`` subclass. This means once a :class:`DTensor` is created, it could be
used in very similar way to ``torch.Tensor``, including running different types of PyTorch operators as if
running them in a single device, allowing proper distributed computation for PyTorch operators.
In addition to existing ``torch.Tensor`` methods, it also offers a set of additional methods to interact with
``torch.Tensor``, ``redistribute`` the DTensor Layout to a new DTensor, get the full tensor content
on all devices, etc.
.. autoclass:: DTensor
:members: from_local, to_local, full_tensor, redistribute, device_mesh, placements
:member-order: groupwise
:special-members: __create_chunk_list__
DeviceMesh as the distributed communicator
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. currentmodule:: torch.distributed.device_mesh
:class:`DeviceMesh` was built from DTensor as the abstraction to describe cluster's device topology and represent
multi-dimensional communicators (on top of ``ProcessGroup``). To see the details of how to create/use a DeviceMesh,
please refer to the `DeviceMesh recipe <https://pytorch.org/tutorials/recipes/distributed_device_mesh.html>`__.
DTensor Placement Types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. automodule:: torch.distributed.tensor.placement_types
.. currentmodule:: torch.distributed.tensor.placement_types
DTensor supports the following types of :class:`Placement` on each :class:`DeviceMesh` dimension:
.. autoclass:: Shard
:members:
:undoc-members:
.. autoclass:: Replicate
:members:
:undoc-members:
.. autoclass:: Partial
:members:
:undoc-members:
.. autoclass:: Placement
:members:
:undoc-members:
.. _create_dtensor:
Different ways to create a DTensor
---------------------------------------
.. currentmodule:: torch.distributed.tensor
There're three ways to construct a :class:`DTensor`:
* :meth:`distribute_tensor` creates a :class:`DTensor` from a logical or "global" ``torch.Tensor`` on
each rank. This could be used to shard the leaf ``torch.Tensor`` s (i.e. model parameters/buffers
and inputs).
* :meth:`DTensor.from_local` creates a :class:`DTensor` from a local ``torch.Tensor`` on each rank, which can
be used to create :class:`DTensor` from a non-leaf ``torch.Tensor`` s (i.e. intermediate activation
tensors during forward/backward).
* DTensor provides dedicated tensor factory functions (e.g. :meth:`empty`, :meth:`ones`, :meth:`randn`, etc.)
to allow different :class:`DTensor` creations by directly specifying the :class:`DeviceMesh` and
:class:`Placement`. Compare to :meth:`distribute_tensor`, this could directly materializing the sharded memory
on device, instead of performing sharding after initializing the logical Tensor memory.
Create DTensor from a logical torch.Tensor
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The SPMD (single program, multiple data) programming model in ``torch.distributed`` launches multiple processes
(i.e. via ``torchrun``) to execute the same program, this means that the model inside the program would be
initialized on different processes first (i.e. the model might be initialized on CPU, or meta device, or directly
on GPU if enough memory).
``DTensor`` offers a :meth:`distribute_tensor` API that could shard the model weights or Tensors to ``DTensor`` s,
where it would create a DTensor from the "logical" Tensor on each process. This would empower the created
``DTensor`` s to comply with the single device semantic, which is critical for **numerical correctness**.
.. autofunction:: distribute_tensor
Along with :meth:`distribute_tensor`, DTensor also offers a :meth:`distribute_module` API to allow easier
sharding on the :class:`nn.Module` level
.. autofunction:: distribute_module
DTensor Factory Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
DTensor also provides dedicated tensor factory functions to allow creating :class:`DTensor` directly
using torch.Tensor like factory function APIs (i.e. torch.ones, torch.empty, etc), by additionally
specifying the :class:`DeviceMesh` and :class:`Placement` for the :class:`DTensor` created:
.. autofunction:: zeros
.. autofunction:: ones
.. autofunction:: empty
.. autofunction:: full
.. autofunction:: rand
.. autofunction:: randn
Debugging
---------------------------------------
.. automodule:: torch.distributed.tensor.debug
.. currentmodule:: torch.distributed.tensor.debug
Logging
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When launching the program, you can turn on additional logging using the `TORCH_LOGS` environment variable from
`torch._logging <https://pytorch.org/docs/main/logging.html#module-torch._logging>`__ :
* `TORCH_LOGS=+dtensor` will display `logging.DEBUG` messages and all levels above it.
* `TORCH_LOGS=dtensor` will display `logging.INFO` messages and above.
* `TORCH_LOGS=-dtensor` will display `logging.WARNING` messages and above.
Debugging Tools
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To debug the program that applied DTensor, and understand more details about what collectives happened under the
hood, DTensor provides a :class:`CommDebugMode`:
.. autoclass:: CommDebugMode
:members:
:undoc-members:
To visualize the sharding of a DTensor that have less than 3 dimensions, DTensor provides :meth:`visualize_sharding`:
.. autofunction:: visualize_sharding
Experimental Features
---------------------------------------
``DTensor`` also provides a set of experimental features. These features are either in prototyping stage, or the basic
functionality is done and but looking for user feedbacks. Please submit a issue to PyTorch if you have feedbacks to
these features.
.. automodule:: torch.distributed.tensor.experimental
.. currentmodule:: torch.distributed.tensor.experimental
.. autofunction:: context_parallel
.. autofunction:: local_map
.. autofunction:: register_sharding
.. modules that are missing docs, add the doc later when necessary
.. py:module:: torch.distributed.tensor.device_mesh

View File

@ -1,460 +1,692 @@
```{eval-rst}
.. role:: hidden
:class: hidden-section
```
Probability distributions - torch.distributions
==================================================
# Probability distributions - torch.distributions
```{eval-rst}
.. automodule:: torch.distributions
```
```{eval-rst}
.. currentmodule:: torch.distributions
```
:hidden:`Distribution`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Distribution`
```{eval-rst}
.. currentmodule:: torch.distributions.distribution
```
```{eval-rst}
.. autoclass:: Distribution
:members:
:show-inheritance:
```
:hidden:`ExponentialFamily`
~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`ExponentialFamily`
```{eval-rst}
.. currentmodule:: torch.distributions.exp_family
```
```{eval-rst}
.. autoclass:: ExponentialFamily
:members:
:show-inheritance:
```
:hidden:`Bernoulli`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Bernoulli`
```{eval-rst}
.. currentmodule:: torch.distributions.bernoulli
```
```{eval-rst}
.. autoclass:: Bernoulli
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Beta`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Beta`
```{eval-rst}
.. currentmodule:: torch.distributions.beta
```
```{eval-rst}
.. autoclass:: Beta
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Binomial`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Binomial`
```{eval-rst}
.. currentmodule:: torch.distributions.binomial
```
```{eval-rst}
.. autoclass:: Binomial
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Categorical`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Categorical`
```{eval-rst}
.. currentmodule:: torch.distributions.categorical
```
```{eval-rst}
.. autoclass:: Categorical
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Cauchy`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Cauchy`
```{eval-rst}
.. currentmodule:: torch.distributions.cauchy
```
```{eval-rst}
.. autoclass:: Cauchy
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Chi2`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Chi2`
```{eval-rst}
.. currentmodule:: torch.distributions.chi2
```
```{eval-rst}
.. autoclass:: Chi2
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`ContinuousBernoulli`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`ContinuousBernoulli`
```{eval-rst}
.. currentmodule:: torch.distributions.continuous_bernoulli
```
```{eval-rst}
.. autoclass:: ContinuousBernoulli
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Dirichlet`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Dirichlet`
```{eval-rst}
.. currentmodule:: torch.distributions.dirichlet
```
```{eval-rst}
.. autoclass:: Dirichlet
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Exponential`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Exponential`
```{eval-rst}
.. currentmodule:: torch.distributions.exponential
```
```{eval-rst}
.. autoclass:: Exponential
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`FisherSnedecor`
~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`FisherSnedecor`
```{eval-rst}
.. currentmodule:: torch.distributions.fishersnedecor
```
```{eval-rst}
.. autoclass:: FisherSnedecor
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Gamma`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Gamma`
```{eval-rst}
.. currentmodule:: torch.distributions.gamma
```
```{eval-rst}
.. autoclass:: Gamma
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`GeneralizedPareto`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`GeneralizedPareto`
```{eval-rst}
.. currentmodule:: torch.distributions.generalized_pareto
```
```{eval-rst}
.. autoclass:: GeneralizedPareto
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Geometric`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Geometric`
```{eval-rst}
.. currentmodule:: torch.distributions.geometric
```
```{eval-rst}
.. autoclass:: Geometric
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Gumbel`
~~~~~~~~~~~~~~~~
## {hidden}`Gumbel`
```{eval-rst}
.. currentmodule:: torch.distributions.gumbel
```
```{eval-rst}
.. autoclass:: Gumbel
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`HalfCauchy`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`HalfCauchy`
```{eval-rst}
.. currentmodule:: torch.distributions.half_cauchy
```
```{eval-rst}
.. autoclass:: HalfCauchy
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`HalfNormal`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`HalfNormal`
```{eval-rst}
.. currentmodule:: torch.distributions.half_normal
```
```{eval-rst}
.. autoclass:: HalfNormal
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Independent`
~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Independent`
```{eval-rst}
.. currentmodule:: torch.distributions.independent
```
```{eval-rst}
.. autoclass:: Independent
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`InverseGamma`
~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`InverseGamma`
```{eval-rst}
.. currentmodule:: torch.distributions.inverse_gamma
```
```{eval-rst}
.. autoclass:: InverseGamma
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Kumaraswamy`
~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Kumaraswamy`
```{eval-rst}
.. currentmodule:: torch.distributions.kumaraswamy
```
```{eval-rst}
.. autoclass:: Kumaraswamy
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`LKJCholesky`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`LKJCholesky`
```{eval-rst}
.. currentmodule:: torch.distributions.lkj_cholesky
```
```{eval-rst}
.. autoclass:: LKJCholesky
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Laplace`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Laplace`
```{eval-rst}
.. currentmodule:: torch.distributions.laplace
```
```{eval-rst}
.. autoclass:: Laplace
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`LogNormal`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`LogNormal`
```{eval-rst}
.. currentmodule:: torch.distributions.log_normal
```
```{eval-rst}
.. autoclass:: LogNormal
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`LowRankMultivariateNormal`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`LowRankMultivariateNormal`
```{eval-rst}
.. currentmodule:: torch.distributions.lowrank_multivariate_normal
```
```{eval-rst}
.. autoclass:: LowRankMultivariateNormal
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`MixtureSameFamily`
~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`MixtureSameFamily`
```{eval-rst}
.. currentmodule:: torch.distributions.mixture_same_family
```
```{eval-rst}
.. autoclass:: MixtureSameFamily
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Multinomial`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Multinomial`
```{eval-rst}
.. currentmodule:: torch.distributions.multinomial
```
```{eval-rst}
.. autoclass:: Multinomial
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`MultivariateNormal`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`MultivariateNormal`
```{eval-rst}
.. currentmodule:: torch.distributions.multivariate_normal
```
```{eval-rst}
.. autoclass:: MultivariateNormal
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`NegativeBinomial`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`NegativeBinomial`
```{eval-rst}
.. currentmodule:: torch.distributions.negative_binomial
```
```{eval-rst}
.. autoclass:: NegativeBinomial
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Normal`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Normal`
```{eval-rst}
.. currentmodule:: torch.distributions.normal
```
```{eval-rst}
.. autoclass:: Normal
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`OneHotCategorical`
~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`OneHotCategorical`
```{eval-rst}
.. currentmodule:: torch.distributions.one_hot_categorical
```
```{eval-rst}
.. autoclass:: OneHotCategorical
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Pareto`
~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Pareto`
```{eval-rst}
.. currentmodule:: torch.distributions.pareto
```
```{eval-rst}
.. autoclass:: Pareto
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Poisson`
~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Poisson`
```{eval-rst}
.. currentmodule:: torch.distributions.poisson
```
```{eval-rst}
.. autoclass:: Poisson
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`RelaxedBernoulli`
~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`RelaxedBernoulli`
```{eval-rst}
.. currentmodule:: torch.distributions.relaxed_bernoulli
```
```{eval-rst}
.. autoclass:: RelaxedBernoulli
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`LogitRelaxedBernoulli`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`LogitRelaxedBernoulli`
```{eval-rst}
.. currentmodule:: torch.distributions.relaxed_bernoulli
```
```{eval-rst}
.. autoclass:: LogitRelaxedBernoulli
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`RelaxedOneHotCategorical`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`RelaxedOneHotCategorical`
```{eval-rst}
.. currentmodule:: torch.distributions.relaxed_categorical
```
```{eval-rst}
.. autoclass:: RelaxedOneHotCategorical
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`StudentT`
~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`StudentT`
```{eval-rst}
.. currentmodule:: torch.distributions.studentT
```
```{eval-rst}
.. autoclass:: StudentT
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`TransformedDistribution`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`TransformedDistribution`
```{eval-rst}
.. currentmodule:: torch.distributions.transformed_distribution
```
```{eval-rst}
.. autoclass:: TransformedDistribution
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Uniform`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Uniform`
```{eval-rst}
.. currentmodule:: torch.distributions.uniform
```
```{eval-rst}
.. autoclass:: Uniform
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`VonMises`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`VonMises`
```{eval-rst}
.. currentmodule:: torch.distributions.von_mises
```
```{eval-rst}
.. autoclass:: VonMises
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Weibull`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Weibull`
```{eval-rst}
.. currentmodule:: torch.distributions.weibull
```
```{eval-rst}
.. autoclass:: Weibull
:members:
:undoc-members:
:show-inheritance:
```
:hidden:`Wishart`
~~~~~~~~~~~~~~~~~~~~~~~
## {hidden}`Wishart`
```{eval-rst}
.. currentmodule:: torch.distributions.wishart
```
```{eval-rst}
.. autoclass:: Wishart
:members:
:undoc-members:
:show-inheritance:
```
`KL Divergence`
~~~~~~~~~~~~~~~~~~~~~~~
## `KL Divergence`
```{eval-rst}
.. automodule:: torch.distributions.kl
```
```{eval-rst}
.. currentmodule:: torch.distributions.kl
```
```{eval-rst}
.. autofunction:: kl_divergence
```
```{eval-rst}
.. autofunction:: register_kl
```
`Transforms`
~~~~~~~~~~~~~~~~~~~~~~~
## `Transforms`
```{eval-rst}
.. automodule:: torch.distributions.transforms
:members:
:member-order: bysource
```
`Constraints`
~~~~~~~~~~~~~~~~~~~~~~~
## `Constraints`
```{eval-rst}
.. automodule:: torch.distributions.constraints
:members:
:member-order: bysource
```
`Constraint Registry`
~~~~~~~~~~~~~~~~~~~~~~~
## `Constraint Registry`
```{eval-rst}
.. automodule:: torch.distributions.constraint_registry
:members:
:member-order: bysource
```
.. This module needs to be documented. Adding here in the meantime
.. for tracking purposes
% This module needs to be documented. Adding here in the meantime
% for tracking purposes
```{eval-rst}
.. py:module:: torch.distributions.bernoulli
.. py:module:: torch.distributions.beta
.. py:module:: torch.distributions.binomial
.. py:module:: torch.distributions.categorical
.. py:module:: torch.distributions.cauchy
.. py:module:: torch.distributions.chi2
.. py:module:: torch.distributions.continuous_bernoulli
.. py:module:: torch.distributions.dirichlet
.. py:module:: torch.distributions.distribution
.. py:module:: torch.distributions.exp_family
.. py:module:: torch.distributions.exponential
.. py:module:: torch.distributions.fishersnedecor
.. py:module:: torch.distributions.gamma
.. py:module:: torch.distributions.generalized_pareto
.. py:module:: torch.distributions.geometric
.. py:module:: torch.distributions.gumbel
.. py:module:: torch.distributions.half_cauchy
.. py:module:: torch.distributions.half_normal
.. py:module:: torch.distributions.independent
.. py:module:: torch.distributions.inverse_gamma
.. py:module:: torch.distributions.kumaraswamy
.. py:module:: torch.distributions.laplace
.. py:module:: torch.distributions.lkj_cholesky
.. py:module:: torch.distributions.log_normal
.. py:module:: torch.distributions.logistic_normal
.. py:module:: torch.distributions.lowrank_multivariate_normal
.. py:module:: torch.distributions.mixture_same_family
.. py:module:: torch.distributions.multinomial
.. py:module:: torch.distributions.multivariate_normal
.. py:module:: torch.distributions.negative_binomial
.. py:module:: torch.distributions.normal
.. py:module:: torch.distributions.one_hot_categorical
.. py:module:: torch.distributions.pareto
.. py:module:: torch.distributions.poisson
.. py:module:: torch.distributions.relaxed_bernoulli
.. py:module:: torch.distributions.relaxed_categorical
.. py:module:: torch.distributions.studentT
.. py:module:: torch.distributions.transformed_distribution
.. py:module:: torch.distributions.uniform
.. py:module:: torch.distributions.utils
.. py:module:: torch.distributions.von_mises
.. py:module:: torch.distributions.weibull
.. py:module:: torch.distributions.wishart
```

View File

@ -1,7 +1,13 @@
torch.utils.dlpack
==================
# torch.utils.dlpack
```{eval-rst}
.. currentmodule:: torch.utils.dlpack
```
```{eval-rst}
.. autofunction:: from_dlpack
```
```{eval-rst}
.. autofunction:: to_dlpack
```