Add new_empty (with dtype argument only) to torch::stable (#159508)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159508
Approved by: https://github.com/janeyx99
ghstack dependencies: #160557
This commit is contained in:
Mikayla Gawarecki
2025-08-19 13:54:31 -07:00
committed by PyTorch MergeBot
parent 543896fcf3
commit 78a8e6a671
9 changed files with 111 additions and 1 deletions

View File

@ -4,6 +4,7 @@
#include <torch/csrc/stable/tensor.h>
#include <torch/csrc/stable/ops.h>
#include <torch/headeronly/util/Exception.h>
#include <torch/headeronly/core/ScalarType.h>
#ifdef LAE_USE_CUDA
#include <cuda_runtime.h>
@ -340,12 +341,24 @@ void boxed_my_narrow(
stack[0] = from(res);
}
Tensor my_new_empty_dtype_variant(Tensor t) {
std::vector<int64_t> sizes = {2, 5};
auto dtype = std::make_optional(at::ScalarType::BFloat16);
return new_empty(t, sizes, dtype);
}
void boxed_my_new_empty_dtype_variant(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_new_empty_dtype_variant(to<Tensor>(stack[0]));
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
m.def("my_transpose(Tensor t, int dim0, int dim1) -> Tensor");
m.def("my_empty_like(Tensor t) -> Tensor");
m.def("fill_infinity(Tensor(a!) t) -> Tensor(a!)");
m.def("my_pad(Tensor t) -> Tensor");
m.def("my_narrow(Tensor t, int dim, int start, int length) -> Tensor");
m.def("my_new_empty_dtype_variant(Tensor t) -> Tensor");
}
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
@ -353,6 +366,7 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("my_empty_like", &boxed_empty_like);
m.impl("fill_infinity", &boxed_fill_infinity);
m.impl("my_is_cpu", &boxed_my_is_cpu);
m.impl("my_new_empty_dtype_variant", &boxed_my_new_empty_dtype_variant);
}
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeImplicitAutograd, m) {

View File

@ -283,3 +283,15 @@ def test_get_current_device_index() -> int:
Returns: Current device index as an integer
"""
return torch.ops.libtorch_agnostic.test_get_current_device_index.default()
def my_new_empty_dtype_variant(t) -> Tensor:
"""
Returns a new empty tensor with shape [2, 5] and dtype bfloat16
Args:
t: Input tensor used as a reference for device and other properties
Returns: New empty tensor with shape [2, 5] and dtype bfloat16
"""
return torch.ops.libtorch_agnostic.my_new_empty_dtype_variant.default(t)

View File

@ -190,7 +190,7 @@ if not IS_WINDOWS:
deterministic = torch.are_deterministic_algorithms_enabled()
try:
# set use_deterministic_algorithms to fill unintialized memory
# set use_deterministic_algorithms to fill uninitialized memory
torch.use_deterministic_algorithms(True)
t = torch.rand(2, 7, device=device)
@ -322,6 +322,21 @@ if not IS_WINDOWS:
finally:
torch.cuda.set_device(prev_device)
def test_my_new_empty_dtype_variant(self, device):
import libtorch_agnostic
deterministic = torch.are_deterministic_algorithms_enabled()
try:
# set use_deterministic_algorithms to fill uninitialized memory
torch.use_deterministic_algorithms(True)
t = torch.randn(3, 4, device=device)
out = libtorch_agnostic.ops.my_new_empty_dtype_variant(t)
ref_out = t.new_empty((2, 5), dtype=torch.bfloat16)
self.assertEqual(out, ref_out, exact_device=True)
finally:
torch.use_deterministic_algorithms(deterministic)
instantiate_device_type_tests(TestLibtorchAgnostic, globals(), except_for=None)
if __name__ == "__main__":