[C10D] Fix spelling of MultiProcContinuousTest (#160892)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160892
Approved by: https://github.com/fduwjj
This commit is contained in:
Will Constable
2025-08-18 09:28:18 -07:00
committed by PyTorch MergeBot
parent ed8bcccf31
commit 779fc29c04
14 changed files with 33 additions and 33 deletions

View File

@ -1,10 +1,10 @@
# Owner(s): ["oncall: distributed"]
from torch.testing._internal.common_distributed import MultiProcContinousTest
from torch.testing._internal.common_distributed import MultiProcContinuousTest
from torch.testing._internal.common_utils import run_tests
class TestTemplate(MultiProcContinousTest):
class TestTemplate(MultiProcContinuousTest):
def testABC(self):
print(f"rank {self.rank} of {self.world_size} testing ABC")

View File

@ -25,7 +25,7 @@ from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.tensor import DTensor
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
MultiProcContinousTest,
MultiProcContinuousTest,
requires_nccl,
)
from torch.testing._internal.common_utils import (
@ -201,7 +201,7 @@ def _test_pg_transport_with_sharded_tensor(self, device) -> None:
torch.testing.assert_close(expected_local_tensor, received_local_tensor)
class PgTransportCPU(MultiProcContinousTest):
class PgTransportCPU(MultiProcContinuousTest):
world_size = 8
timeout: timedelta = timedelta(seconds=20)
@ -227,7 +227,7 @@ class PgTransportCPU(MultiProcContinousTest):
_test_pg_transport_with_sharded_tensor(self, self.device)
class PgTransportCUDA(MultiProcContinousTest):
class PgTransportCUDA(MultiProcContinuousTest):
world_size = 2
timeout: timedelta = timedelta(seconds=20)

View File

@ -31,7 +31,7 @@ from torch.distributed.pipelining.schedules import _PipelineScheduleRuntime
from torch.nn.modules.loss import MSELoss
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
MultiProcContinousTest,
MultiProcContinuousTest,
requires_nccl,
)
from torch.testing._internal.common_utils import (
@ -199,7 +199,7 @@ def zero_gradients(stage_modules):
stage_module.zero_grad()
class ScheduleTest(MultiProcContinousTest):
class ScheduleTest(MultiProcContinuousTest):
world_size = 4
@classmethod
@ -802,7 +802,7 @@ class ScheduleTest(MultiProcContinousTest):
instantiate_parametrized_tests(ScheduleTest)
class CustomSchedulesTest(MultiProcContinousTest):
class CustomSchedulesTest(MultiProcContinuousTest):
"""
These schedules are from the ScheduleRegistry and require world_size == 2
The schedules test weird and unconventional schedules for edge cases

View File

@ -16,7 +16,7 @@ from torch.distributed.pipelining import (
from torch.distributed.pipelining._utils import PipeliningShapeError
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
MultiProcContinousTest,
MultiProcContinuousTest,
MultiProcessTestCase,
requires_nccl,
)
@ -63,7 +63,7 @@ def get_flatten_hook():
return flatten_hook
class StageTest(MultiProcContinousTest):
class StageTest(MultiProcContinuousTest):
@classmethod
def backend_str(cls) -> str:
# Testing with NCCL backend

View File

@ -25,7 +25,7 @@ import torch.distributed as dist
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
init_multigpu_helper,
MultiProcContinousTest,
MultiProcContinuousTest,
requires_nccl,
requires_nccl_version,
sm_is_or_higher_than,
@ -45,7 +45,7 @@ if TEST_WITH_DEV_DBG_ASAN:
sys.exit(0)
class ProcessGroupNCCLOpTest(MultiProcContinousTest):
class ProcessGroupNCCLOpTest(MultiProcContinuousTest):
@classmethod
def backend_str(cls) -> str:
return "nccl"

View File

@ -19,7 +19,7 @@ from torch.distributed.tensor import DTensor
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
MultiProcContinousTest,
MultiProcContinuousTest,
requires_nccl,
skip_if_lt_x_gpu,
)
@ -91,7 +91,7 @@ def loss_fn(y, target, scale=1e-4):
return torch.nn.functional.cross_entropy(y, target) * scale
class ComposabilityTest(MultiProcContinousTest):
class ComposabilityTest(MultiProcContinuousTest):
@classmethod
def backend_str(cls) -> str:
# Testing with NCCL backend

View File

@ -7,7 +7,7 @@ from dataclasses import dataclass
import torch
from torch.multiprocessing.reductions import reduce_tensor
from torch.testing._internal.common_distributed import MultiProcContinousTest
from torch.testing._internal.common_distributed import MultiProcContinuousTest
from torch.testing._internal.common_utils import (
requires_cuda_p2p_access,
run_tests,
@ -46,7 +46,7 @@ def from_buffer(
@requires_cuda_p2p_access()
class CupyAsTensorTest(MultiProcContinousTest):
class CupyAsTensorTest(MultiProcContinuousTest):
@classmethod
def backend_str(cls):
return "gloo"

View File

@ -14,7 +14,7 @@ from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
)
from torch.testing._internal.common_distributed import (
MultiProcContinousTest,
MultiProcContinuousTest,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
@ -246,7 +246,7 @@ class TestNCCL(TestCase):
@requires_cuda_p2p_access()
class NCCLSymmetricMemoryTest(MultiProcContinousTest):
class NCCLSymmetricMemoryTest(MultiProcContinuousTest):
@property
def device(self) -> torch.device:
return torch.device("cuda", self.rank)

View File

@ -7,7 +7,7 @@
import torch
import torch.distributed as dist
import torch.distributed._symmetric_memory as symm_mem
from torch.testing._internal.common_distributed import MultiProcContinousTest
from torch.testing._internal.common_distributed import MultiProcContinuousTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
@ -33,7 +33,7 @@ device_module = torch.get_device_module(device_type)
@requires_nvshmem()
@requires_cuda_p2p_access()
class NVSHMEMSymmetricMemoryTest(MultiProcContinousTest):
class NVSHMEMSymmetricMemoryTest(MultiProcContinuousTest):
def _init_device(self) -> None:
# TODO: relieve this (seems to hang if without)
device_module.set_device(self.device)
@ -128,7 +128,7 @@ class NVSHMEMSymmetricMemoryTest(MultiProcContinousTest):
@instantiate_parametrized_tests
@requires_nvshmem()
@requires_cuda_p2p_access()
class NVSHMEMAll2AllTest(MultiProcContinousTest):
class NVSHMEMAll2AllTest(MultiProcContinuousTest):
def _init_device(self) -> None:
# TODO: relieve this (seems to hang if without)
device_module.set_device(self.device)

View File

@ -9,7 +9,7 @@ import torch.distributed as dist
import torch.distributed._symmetric_memory as symm_mem
import torch.distributed._symmetric_memory._nvshmem_triton as nvshmem
from torch._inductor.runtime.triton_compat import triton
from torch.testing._internal.common_distributed import MultiProcContinousTest
from torch.testing._internal.common_distributed import MultiProcContinuousTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
@ -246,7 +246,7 @@ def nvshmem_reduce_kernel(
@instantiate_parametrized_tests
@requires_nvshmem()
class NVSHMEMTritonTest(MultiProcContinousTest):
class NVSHMEMTritonTest(MultiProcContinuousTest):
def _init_device(self) -> None:
# TODO: relieve this (seems to hang if without)
device_module.set_device(self.device)

View File

@ -6,7 +6,7 @@
import torch
from torch.multiprocessing.reductions import reduce_tensor
from torch.testing._internal.common_distributed import MultiProcContinousTest
from torch.testing._internal.common_distributed import MultiProcContinuousTest
from torch.testing._internal.common_utils import (
requires_cuda_p2p_access,
run_tests,
@ -20,7 +20,7 @@ device_module = torch.get_device_module(device_type)
@requires_cuda_p2p_access()
class P2PIpcTest(MultiProcContinousTest):
class P2PIpcTest(MultiProcContinuousTest):
@classmethod
def backend_str(cls):
return "gloo"

View File

@ -24,7 +24,7 @@ from torch.distributed._symmetric_memory import (
from torch.testing._internal.common_cuda import _get_torch_cuda_version, SM90OrLater
from torch.testing._internal.common_device_type import e4m3_type
from torch.testing._internal.common_distributed import (
MultiProcContinousTest,
MultiProcContinuousTest,
MultiProcessTestCase,
requires_multicast_support,
skip_if_lt_x_gpu,
@ -52,7 +52,7 @@ device_module = torch.get_device_module(device_type)
@instantiate_parametrized_tests
@requires_cuda_p2p_access()
class SymmetricMemoryTest(MultiProcContinousTest):
class SymmetricMemoryTest(MultiProcContinuousTest):
@property
def device(self) -> torch.device:
return torch.device(device_type, self.rank)
@ -636,7 +636,7 @@ class SymmetricMemoryTest(MultiProcContinousTest):
# This Test class is used to test the error handling of SymmetricMemory APIs.
# Since a process restart is often needed after each test, we use the
# MultiProcessTestCase instead of MultiProcContinousTest.
# MultiProcessTestCase instead of MultiProcContinuousTest.
@requires_cuda_p2p_access()
class SymmMemNegativeTest(MultiProcessTestCase):
def setUp(self) -> None:
@ -746,7 +746,7 @@ class SymmMemNegativeTest(MultiProcessTestCase):
@instantiate_parametrized_tests
@requires_cuda_p2p_access()
class SymmMemCollectiveTest(MultiProcContinousTest):
class SymmMemCollectiveTest(MultiProcContinuousTest):
@property
def device(self) -> torch.device:
return torch.device(device_type, self.rank)
@ -993,7 +993,7 @@ class SymmMemCollectiveTest(MultiProcContinousTest):
@instantiate_parametrized_tests
@requires_cuda_p2p_access()
class LoweringTest(MultiProcContinousTest):
class LoweringTest(MultiProcContinuousTest):
def _init_process(self) -> None:
torch.cuda.set_device(self.device)
enable_symm_mem_for_group(dist.group.WORLD.group_name)

View File

@ -1568,7 +1568,7 @@ class DynamoDistributedMultiProcTestCase(DistributedTestBase):
self.run_test(test_name, parent_pipe)
class MultiProcContinousTest(TestCase):
class MultiProcContinuousTest(TestCase):
# Class variables:
MAIN_PROCESS_RANK = -1
# number of test processes

View File

@ -31,7 +31,7 @@ from torch.distributed.tensor.parallel import (
SequenceParallel,
)
from torch.testing._internal.common_distributed import (
MultiProcContinousTest,
MultiProcContinuousTest,
MultiProcessTestCase,
MultiThreadedTestCase,
run_subtests,
@ -337,7 +337,7 @@ def skip_unless_torch_gpu(method: T) -> T:
return cast(T, skip_if_lt_x_gpu(NUM_DEVICES)(method))
class DTensorContinuousTestBase(MultiProcContinousTest):
class DTensorContinuousTestBase(MultiProcContinuousTest):
@classmethod
def device_type(cls) -> str:
# if enough GPU/XPU/HPU we can use those devices, otherwise we fallback to CPU