move no_deadline to hypothesis_utils.py (#25598)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25598

att

Test Plan:
CI

Imported from OSS

Differential Revision: D17192467

fbshipit-source-id: 9ee93b02cc293bb71ed114534d92eedda3ddee88
This commit is contained in:
Jerry Zhang
2019-09-04 16:57:41 -07:00
committed by Facebook Github Bot
parent 80820b2610
commit 76b6b1b1a6
6 changed files with 15 additions and 14 deletions

View File

@ -7,7 +7,6 @@ r"""Importing this file includes common utility methods and base clases for
checking quantization api and properties of resulting modules.
"""
import hypothesis
import io
import torch
import torch.nn as nn
@ -18,15 +17,6 @@ from torch.quantization import QuantWrapper, QuantStub, DeQuantStub, \
default_qconfig, QConfig, default_observer, default_weight_observer, \
default_qat_qconfig, propagate_qconfig, convert, DEFAULT_DYNAMIC_MODULE_MAPPING
# Disable deadline testing if this version of hypthesis supports it, otherwise
# just return the original function
def no_deadline(fn):
try:
return hypothesis.settings(deadline=None)(fn)
except hypothesis.errors.InvalidArgument:
return fn
def test_only_eval_fn(model, calib_data):
r"""
Default evaluation function takes a torch.utils.data.Dataset or a list of

View File

@ -2,6 +2,7 @@ from collections import defaultdict
import numpy as np
import torch
import hypothesis
from hypothesis import assume
from hypothesis import strategies as st
from hypothesis.extra import numpy as stnp
@ -250,3 +251,12 @@ def tensor_conv2d(draw,
b = draw(tensor(shapes=(_out_channels,), elements=elements,
qparams=qparams[2]))
return X, w, b, g
# Disable deadline testing if this version of hypthesis supports it, otherwise
# just return the original function
def no_deadline(fn):
try:
return hypothesis.settings(deadline=None)(fn)
except hypothesis.errors.InvalidArgument:
return fn

View File

@ -6,7 +6,7 @@ import unittest
from hypothesis import given
from hypothesis import strategies as st
import hypothesis_utils as hu
from common_quantization import no_deadline
from hypothesis_utils import no_deadline
from common_utils import run_tests
from torch.quantization import FakeQuantize

View File

@ -8,10 +8,10 @@ from torch.nn import Conv2d, BatchNorm2d, ReLU
from torch.nn._intrinsic.qat import ConvBn2d, ConvBnReLU2d
from torch.quantization.QConfig import default_qat_qconfig
from torch.utils.mkldnn import disable_mkldnn_conv
from common_quantization import no_deadline
from common_utils import TestCase, run_tests
from hypothesis import given
from hypothesis import strategies as st
from hypothesis_utils import no_deadline
from functools import reduce

View File

@ -9,10 +9,10 @@ from torch.nn.modules.utils import _pair
from hypothesis import assume, given
from hypothesis import strategies as st
import hypothesis_utils as hu
from hypothesis_utils import no_deadline
from common_utils import TEST_WITH_UBSAN, TestCase, run_tests, IS_WINDOWS, IS_PPC
from common_quantized import _quantize, _dequantize, _calculate_dynamic_qparams
from common_quantization import no_deadline
# Make sure we won't have overflows from vpmaddubsw instruction used in FBGEMM.
# On the current Intel x86 architecture, we need to utilize vpmaddubsw instruction

View File

@ -7,10 +7,11 @@ from torch.nn.quantized.modules import Conv2d
from torch.nn._intrinsic.quantized import ConvReLU2d
import torch.quantization
from common_utils import run_tests, tempfile
from common_quantization import QuantizationTestCase, no_deadline, prepare_dynamic
from common_quantization import QuantizationTestCase, prepare_dynamic
from common_quantized import _calculate_dynamic_qparams
from hypothesis import given
from hypothesis import strategies as st
from hypothesis_utils import no_deadline
import unittest
'''