mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Apply TorchFix TOR203 fixes (#143691)
Codemodded via `torchfix . --select=TOR203 --fix`. This is a step to unblock https://github.com/pytorch/pytorch/pull/141076 Pull Request resolved: https://github.com/pytorch/pytorch/pull/143691 Approved by: https://github.com/malfet
This commit is contained in:
committed by
PyTorch MergeBot
parent
c042c8a475
commit
727ee853b4
@ -1,4 +1,4 @@
|
||||
import torchvision.models as models
|
||||
from torchvision import models
|
||||
|
||||
import torch
|
||||
import torch.autograd.profiler as profiler
|
||||
|
@ -1,8 +1,8 @@
|
||||
import time
|
||||
|
||||
import torchvision.models as models
|
||||
from opacus import PrivacyEngine
|
||||
from opacus.utils.module_modification import convert_batchnorm_modules
|
||||
from torchvision import models
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
@ -12,9 +12,8 @@ import sys
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
import numpy as np
|
||||
import torchvision.transforms as transforms
|
||||
from opacus import PrivacyEngine
|
||||
from torchvision import models
|
||||
from torchvision import models, transforms
|
||||
from torchvision.datasets import CIFAR10
|
||||
from tqdm import tqdm
|
||||
|
||||
|
@ -12,8 +12,7 @@ import sys
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
import numpy as np
|
||||
import torchvision.transforms as transforms
|
||||
from torchvision import models
|
||||
from torchvision import models, transforms
|
||||
from torchvision.datasets import CIFAR10
|
||||
from tqdm import tqdm
|
||||
|
||||
|
@ -22,8 +22,8 @@ import os
|
||||
import os.path
|
||||
|
||||
import numpy as np
|
||||
import torchvision.transforms as transforms
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
|
||||
import torch
|
||||
import torch.utils.data as data
|
||||
|
@ -4541,7 +4541,7 @@ class TestExamplesCorrectness(TestCase):
|
||||
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
|
||||
@parametrize("mechanism", ["make_functional", "functional_call"])
|
||||
def test_resnet18_per_sample_grads(self, device, mechanism):
|
||||
import torchvision.models as models
|
||||
from torchvision import models
|
||||
|
||||
model = models.__dict__["resnet18"](
|
||||
pretrained=False, norm_layer=(lambda c: nn.GroupNorm(min(32, c), c))
|
||||
|
Reference in New Issue
Block a user