mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Add flex decoding benchmark (#130850)
ghstack-source-id: b4f26fb66ed47907b11580c8c853737959c58811 Pull Request resolved: https://github.com/pytorch/pytorch/pull/130788 Add benchmark for flex decoding. Pull Request resolved: https://github.com/pytorch/pytorch/pull/130850 Approved by: https://github.com/Chillee, https://github.com/drisspg
This commit is contained in:
committed by
PyTorch MergeBot
parent
fff92d4f18
commit
6d9f74f0af
@ -11,7 +11,7 @@ from tqdm import tqdm
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.attention.flex_attention import flex_attention
|
||||
from torch.nn.attention.flex_attention import create_block_mask, flex_attention
|
||||
|
||||
|
||||
torch._dynamo.config.automatic_dynamic_shapes = False
|
||||
@ -35,15 +35,20 @@ class ExperimentConfig:
|
||||
score_mod: Callable
|
||||
dtype: torch.dtype
|
||||
calculate_bwd_time: bool
|
||||
cal_bandwidth: bool
|
||||
|
||||
def __post_init__(self):
|
||||
assert len(self.shape) == 4, "Shape must be of length 4"
|
||||
assert (
|
||||
len(self.shape) == 6
|
||||
), "Shape must be of length 6" # [B, Hq, M, Hkv, N, D]
|
||||
|
||||
def asdict(self):
|
||||
# Convert the dataclass instance to a dictionary
|
||||
d = asdict(self)
|
||||
# Remove the 'calculate_bwd_time' key
|
||||
# Remove the 'calculate_bwd_time' and `cal_bandwidth` key
|
||||
d.pop("calculate_bwd_time", None)
|
||||
d.pop("cal_bandwidth", None)
|
||||
d["shape(B,Hq,M,Hkv,N,D)"] = d.pop("shape")
|
||||
return d
|
||||
|
||||
|
||||
@ -72,16 +77,21 @@ class Experiment:
|
||||
|
||||
def generate_inputs(
|
||||
batch_size: int,
|
||||
num_heads: int,
|
||||
q_heads: int,
|
||||
q_sequence_length: int,
|
||||
kv_heads: int,
|
||||
kv_sequence_length: int,
|
||||
head_dim: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
requires_grad: bool,
|
||||
):
|
||||
q_shape = (batch_size, q_sequence_length, num_heads * head_dim)
|
||||
kv_shape = (batch_size, kv_sequence_length, num_heads * head_dim)
|
||||
q_shape = (batch_size, q_sequence_length, q_heads * head_dim)
|
||||
kv_shape = (batch_size, kv_sequence_length, kv_heads * head_dim)
|
||||
|
||||
assert q_heads % kv_heads == 0
|
||||
|
||||
num_h_groups = q_heads // kv_heads
|
||||
|
||||
make_q = partial(
|
||||
torch.rand, q_shape, device=device, dtype=dtype, requires_grad=requires_grad
|
||||
@ -91,32 +101,33 @@ def generate_inputs(
|
||||
)
|
||||
query = (
|
||||
make_q()
|
||||
.view(batch_size, q_sequence_length, num_heads, head_dim)
|
||||
.view(batch_size, num_h_groups * q_sequence_length, kv_heads, head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
key = (
|
||||
make_kv()
|
||||
.view(batch_size, kv_sequence_length, num_heads, head_dim)
|
||||
.view(batch_size, kv_sequence_length, kv_heads, head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
value = (
|
||||
make_kv()
|
||||
.view(batch_size, kv_sequence_length, num_heads, head_dim)
|
||||
.view(batch_size, kv_sequence_length, kv_heads, head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
return query, key, value
|
||||
|
||||
|
||||
def run_single_experiment(
|
||||
config: ExperimentConfig, dynamic=False, max_autotune=False
|
||||
config: ExperimentConfig, dynamic=False, max_autotune=False, enable_mask=False
|
||||
) -> ExperimentResults:
|
||||
device = torch.device("cuda")
|
||||
batch_size, num_heads, q_seq_len, head_dim = config.shape
|
||||
batch_size, q_heads, q_seq_len, kv_heads, kv_seq_len, head_dim = config.shape
|
||||
query, key, value = generate_inputs(
|
||||
batch_size,
|
||||
num_heads,
|
||||
q_seq_len,
|
||||
q_heads,
|
||||
q_seq_len,
|
||||
kv_heads,
|
||||
kv_seq_len,
|
||||
head_dim,
|
||||
config.dtype,
|
||||
device,
|
||||
@ -135,11 +146,18 @@ def run_single_experiment(
|
||||
|
||||
score_mod = config.score_mod
|
||||
|
||||
if enable_mask:
|
||||
block_mask = create_block_mask(
|
||||
score_mod, 1, 1, q_seq_len * (q_heads // kv_heads), kv_seq_len, query.device
|
||||
)
|
||||
else:
|
||||
block_mask = None
|
||||
|
||||
forward_eager_time = benchmark_torch_function_in_microseconds(
|
||||
eager_sdpa, query, key, value, score_mod
|
||||
)
|
||||
forward_compiled_time = benchmark_torch_function_in_microseconds(
|
||||
compiled_sdpa, query, key, value, score_mod
|
||||
compiled_sdpa, query, key, value, score_mod, block_mask
|
||||
)
|
||||
|
||||
if config.calculate_bwd_time:
|
||||
@ -176,10 +194,54 @@ def calculate_speedup(results: ExperimentResults, type: str) -> float:
|
||||
raise ValueError(f"Invalid type {type}")
|
||||
|
||||
|
||||
def calculate_bandwidth(
|
||||
config: ExperimentConfig, results: ExperimentResults, type: str
|
||||
) -> float:
|
||||
if type == "fwd":
|
||||
batch_size, q_heads, q_seq_len, kv_heads, kv_seq_len, head_dim = config.shape
|
||||
query_size = (
|
||||
batch_size
|
||||
* q_heads
|
||||
* q_seq_len
|
||||
* head_dim
|
||||
* torch.finfo(config.dtype).bits
|
||||
/ 8
|
||||
)
|
||||
kv_size = (
|
||||
batch_size
|
||||
* kv_heads
|
||||
* kv_seq_len
|
||||
* head_dim
|
||||
* torch.finfo(config.dtype).bits
|
||||
/ 8
|
||||
* 2
|
||||
)
|
||||
output_size = query_size
|
||||
total_size = (query_size + kv_size + output_size) / 1e9 # In GB
|
||||
time_in_seconds = results.fwd_times.compiled_time / 1e6
|
||||
return total_size / time_in_seconds / 1e3
|
||||
else:
|
||||
raise ValueError(f"Invalid type {type}")
|
||||
|
||||
|
||||
def calculate_tflops(config: ExperimentConfig, results: ExperimentResults) -> float:
|
||||
(B, Hq, M, Hkv, N, D) = config.shape
|
||||
qk_flops = M * N * D * 2
|
||||
softmax_flops = M * N * 2 # Not counting online softmax overhead
|
||||
o_flops = M * D * N * 2
|
||||
# Not counting split k overhead
|
||||
total_flops = B * Hq * (qk_flops + softmax_flops + o_flops)
|
||||
return total_flops / results.fwd_times.compiled_time / 1e6 # in TFLOPs/
|
||||
|
||||
|
||||
def get_func_name(func):
|
||||
return func.__name__.split("<locals>.")[-1].split(" at ")[0]
|
||||
|
||||
|
||||
def set_func_name(func, name):
|
||||
func.__name__ = name
|
||||
|
||||
|
||||
def get_average_speedups(results: List[Experiment], type: str):
|
||||
# Calculate speedups
|
||||
speedups = [calculate_speedup(r.results, type) for r in results]
|
||||
@ -231,6 +293,16 @@ def print_results(results: List[Experiment]):
|
||||
# Calculate speedups
|
||||
fwd_speedups = [calculate_speedup(r.results, type="fwd") for r in results]
|
||||
table_data["fwd_speedup"] = fwd_speedups
|
||||
|
||||
# Calculate mem + computational throughput
|
||||
if results[0].config.cal_bandwidth:
|
||||
fwd_bandwidth = [
|
||||
calculate_bandwidth(r.config, r.results, type="fwd") for r in results
|
||||
]
|
||||
table_data["fwd_mem_bw (TB/s)"] = fwd_bandwidth
|
||||
fwd_tflops = [calculate_tflops(r.config, r.results) for r in results]
|
||||
table_data["TFlops/s"] = fwd_tflops
|
||||
|
||||
if results[0].config.calculate_bwd_time:
|
||||
bwd_speedups = [calculate_speedup(r.results, type="bwd") for r in results]
|
||||
table_data["bwd_speedup"] = bwd_speedups
|
||||
@ -274,36 +346,74 @@ def generate_score_mods(score_mods: List[str]) -> List[Callable]:
|
||||
return [function_dict[name] for name in score_mods]
|
||||
|
||||
|
||||
def get_gqa_score_mod(score_mod, G, q_seq_len):
|
||||
def score_mod_gqa(score, b, hkv, m, n):
|
||||
g = m // q_seq_len
|
||||
new_m = m % q_seq_len
|
||||
hq = hkv * G + g
|
||||
return score_mod(score, b, hq, new_m, n)
|
||||
|
||||
score_mod_name = get_func_name(score_mod)
|
||||
set_func_name(score_mod_gqa, score_mod_name + "_gqa")
|
||||
return score_mod_gqa
|
||||
|
||||
|
||||
def generate_experiment_configs(
|
||||
calculate_bwd: bool,
|
||||
dtype: torch.dtype,
|
||||
batch_sizes: List[int],
|
||||
num_heads: List[int],
|
||||
num_heads: List[Tuple[int, int]],
|
||||
seq_lens: List[int],
|
||||
head_dims: List[int],
|
||||
score_mods: List[str],
|
||||
decoding: bool,
|
||||
kv_cache_size: List[int],
|
||||
cal_bandwidth: bool,
|
||||
) -> List[ExperimentConfig]:
|
||||
q_kv_seq_lens = [(i, i) for i in seq_lens] # only testing q_len == kv_len
|
||||
assert not (calculate_bwd and decoding), "Decoding does not support backward"
|
||||
|
||||
if decoding:
|
||||
q_kv_seq_lens = [(1, i) for i in seq_lens] # only testing query length == 1
|
||||
else:
|
||||
q_kv_seq_lens = [(i, i) for i in seq_lens] # only testing q_len == kv_len
|
||||
dtypes = [dtype]
|
||||
score_mods = generate_score_mods(score_mods)
|
||||
all_configs = []
|
||||
for (
|
||||
bsz,
|
||||
n_heads,
|
||||
(q_heads, kv_heads),
|
||||
(q_seq_len, kv_seq_len),
|
||||
head_dim,
|
||||
score_mod,
|
||||
dtype,
|
||||
) in itertools.product(
|
||||
batch_sizes, num_heads, q_kv_seq_lens, head_dims, score_mods, dtypes
|
||||
kv_cache_size if kv_cache_size else batch_sizes,
|
||||
num_heads,
|
||||
q_kv_seq_lens,
|
||||
head_dims,
|
||||
score_mods,
|
||||
dtypes,
|
||||
):
|
||||
assert q_seq_len == kv_seq_len, "Only equal length inputs supported for now."
|
||||
if kv_cache_size:
|
||||
head_size_bytes = torch.finfo(dtype).bits / 8 * head_dim
|
||||
bsz = int(
|
||||
(bsz * 1024 * 1024) // (kv_heads * kv_seq_len * head_size_bytes * 2)
|
||||
)
|
||||
if bsz <= 0:
|
||||
continue
|
||||
|
||||
if q_heads != kv_heads: # GQA work around before it's explicitly supported
|
||||
assert q_heads % kv_heads == 0
|
||||
G = q_heads // kv_heads
|
||||
score_mod = get_gqa_score_mod(score_mod, G, q_seq_len)
|
||||
|
||||
all_configs.append(
|
||||
ExperimentConfig(
|
||||
shape=(bsz, n_heads, q_seq_len, head_dim),
|
||||
shape=(bsz, q_heads, q_seq_len, kv_heads, kv_seq_len, head_dim),
|
||||
score_mod=score_mod,
|
||||
dtype=dtype,
|
||||
calculate_bwd_time=calculate_bwd,
|
||||
cal_bandwidth=cal_bandwidth,
|
||||
)
|
||||
)
|
||||
|
||||
@ -317,14 +427,26 @@ def main(args):
|
||||
results = []
|
||||
for config in tqdm(
|
||||
generate_experiment_configs(
|
||||
args.calculate_bwd, args.dtype, args.b, args.nh, args.s, args.d, args.mods
|
||||
args.calculate_bwd,
|
||||
args.dtype,
|
||||
args.b,
|
||||
args.nh,
|
||||
args.s,
|
||||
args.d,
|
||||
args.mods,
|
||||
args.decoding,
|
||||
args.kv_cache_size,
|
||||
args.cal_bandwidth,
|
||||
)
|
||||
):
|
||||
results.append(
|
||||
Experiment(
|
||||
config,
|
||||
run_single_experiment(
|
||||
config, dynamic=args.dynamic, max_autotune=args.max_autotune
|
||||
config,
|
||||
dynamic=args.dynamic,
|
||||
max_autotune=args.max_autotune,
|
||||
enable_mask=args.mask,
|
||||
),
|
||||
)
|
||||
)
|
||||
@ -332,6 +454,14 @@ def main(args):
|
||||
print_results(results)
|
||||
|
||||
|
||||
def heads_input_type(s):
|
||||
try:
|
||||
hq, hkv = map(int, s.split(","))
|
||||
return hq, hkv
|
||||
except Exception as e:
|
||||
raise argparse.ArgumentTypeError("Heads must be Hq,Hkv") from e
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Set up the argument parser
|
||||
parser = argparse.ArgumentParser(
|
||||
@ -351,7 +481,13 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"-b", type=int, nargs="+", help="batch sizes", default=[2, 8, 16]
|
||||
)
|
||||
parser.add_argument("-nh", type=int, nargs="+", help="# of heads", default=[16])
|
||||
parser.add_argument(
|
||||
"-nh",
|
||||
type=heads_input_type,
|
||||
nargs="+",
|
||||
help="# of q-heads,kv-heads",
|
||||
default=[(16, 16), (16, 2)],
|
||||
)
|
||||
parser.add_argument(
|
||||
"-s", type=int, nargs="+", help="sequence lengths", default=[512, 1024, 4096]
|
||||
)
|
||||
@ -366,6 +502,29 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--max-autotune", action="store_true", help="Turn on max-autotune"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--decoding",
|
||||
action="store_true",
|
||||
help="Benchmark Decoding (query sequence length = 1)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kv-cache-size",
|
||||
type=int,
|
||||
nargs="+",
|
||||
required=False,
|
||||
help="""
|
||||
key/value cache size in MiB.
|
||||
Ignores -b batch size and calculate batch size from kv_cache size instead when specified.
|
||||
""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cal-bandwidth",
|
||||
action="store_true",
|
||||
help="Calculate kernel memory bandwidth & computational throughput. ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mask", action="store_true", help="Enables block sparsity mask. "
|
||||
)
|
||||
|
||||
# Parse arguments
|
||||
args = parser.parse_args()
|
||||
|
Reference in New Issue
Block a user