mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[BE][Easy] replace import pathlib
with from pathlib import Path
(#129426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129426 Approved by: https://github.com/malfet
This commit is contained in:
committed by
PyTorch MergeBot
parent
7837a12474
commit
6d75604ef1
@ -7,10 +7,11 @@ that opens libneuralnetworks.so with dlopen and finds the functions
|
||||
we need with dlsym. We also generate a "check" wrapper that checks
|
||||
return values and throws C++ exceptions on errors.
|
||||
"""
|
||||
import pathlib
|
||||
|
||||
import re
|
||||
import sys
|
||||
import textwrap
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
PREFIX = """\
|
||||
@ -231,7 +232,7 @@ def main(argv):
|
||||
)
|
||||
)
|
||||
|
||||
out_dir = pathlib.Path(__file__).parent
|
||||
out_dir = Path(__file__).parent
|
||||
|
||||
(out_dir / "nnapi_wrapper.h").write_text(
|
||||
PREFIX
|
||||
|
@ -18,12 +18,12 @@ Known limitations:
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import pathlib
|
||||
import subprocess
|
||||
import sys
|
||||
import urllib
|
||||
from io import BytesIO
|
||||
from itertools import product
|
||||
from pathlib import Path
|
||||
from urllib.request import urlopen
|
||||
from zipfile import ZipFile
|
||||
|
||||
@ -34,7 +34,7 @@ import requests
|
||||
# https://console.rockset.com/lambdas/details/commons.artifacts
|
||||
ARTIFACTS_QUERY_URL = "https://api.usw2a1.rockset.com/v1/public/shared_lambdas/4ca0033e-0117-41f5-b043-59cde19eff35"
|
||||
CSV_LINTER = str(
|
||||
pathlib.Path(__file__).absolute().parent.parent.parent.parent
|
||||
Path(__file__).absolute().parent.parent.parent.parent
|
||||
/ "tools/linter/adapters/no_merge_conflict_csv_linter.py"
|
||||
)
|
||||
|
||||
|
@ -2,7 +2,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import abc
|
||||
|
||||
import argparse
|
||||
import collections
|
||||
import contextlib
|
||||
@ -14,7 +13,6 @@ import importlib
|
||||
import itertools
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
import shutil
|
||||
import signal
|
||||
import subprocess
|
||||
@ -22,7 +20,7 @@ import sys
|
||||
import time
|
||||
import weakref
|
||||
from contextlib import contextmanager
|
||||
|
||||
from pathlib import Path
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
@ -60,6 +58,7 @@ from torch._dynamo.testing import (
|
||||
same,
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
from torch._dynamo.utils import (
|
||||
clone_inputs,
|
||||
@ -81,6 +80,7 @@ from torch._subclasses.fake_tensor import FakeTensorMode
|
||||
from torch.utils import _pytree as pytree
|
||||
from torch.utils._pytree import tree_map, tree_map_only
|
||||
|
||||
|
||||
try:
|
||||
import torch_xla
|
||||
import torch_xla.core.xla_model as xm
|
||||
@ -920,7 +920,7 @@ def speedup_experiment_onnx(
|
||||
2. Running ORT with OnnxModel.
|
||||
|
||||
Writes to ./{output_filename}, which should be
|
||||
`pathlib.Path(self.output_dir) / f"{self.compiler}_{suite}_{self.dtype}_{self.mode}_{self.device}_{self.testing}.csv".
|
||||
`Path(self.output_dir) / f"{self.compiler}_{suite}_{self.dtype}_{self.mode}_{self.device}_{self.testing}.csv".
|
||||
|
||||
TODO(bowbao): Record export time and export peak memory usage.
|
||||
"""
|
||||
@ -1347,8 +1347,8 @@ class OnnxModel(abc.ABC):
|
||||
@classmethod
|
||||
def _generate_onnx_model_directory(
|
||||
cls, output_directory: str, compiler_name: str, model_name: str
|
||||
) -> pathlib.Path:
|
||||
model_path = pathlib.Path(
|
||||
) -> Path:
|
||||
model_path = Path(
|
||||
output_directory,
|
||||
".onnx_models",
|
||||
model_name,
|
||||
@ -2389,7 +2389,6 @@ class BenchmarkRunner:
|
||||
from diffusers.models.transformer_2d import Transformer2DModel
|
||||
from torchbenchmark.models.nanogpt.model import Block
|
||||
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
||||
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import os
|
||||
import pathlib
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
from common import (
|
||||
get_testcases,
|
||||
@ -194,7 +194,7 @@ if __name__ == "__main__":
|
||||
"filename",
|
||||
nargs="?",
|
||||
default=str(
|
||||
pathlib.Path(__file__).absolute().parent.parent.parent
|
||||
Path(__file__).absolute().parent.parent.parent
|
||||
/ "torch/testing/_internal/dynamo_test_failures.py"
|
||||
),
|
||||
help="Optional path to dynamo_test_failures.py",
|
||||
@ -203,7 +203,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"test_dir",
|
||||
nargs="?",
|
||||
default=str(pathlib.Path(__file__).absolute().parent.parent.parent / "test"),
|
||||
default=str(Path(__file__).absolute().parent.parent.parent / "test"),
|
||||
help="Optional path to test folder",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -219,7 +219,7 @@ if __name__ == "__main__":
|
||||
action="store_true",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
assert pathlib.Path(args.filename).exists(), args.filename
|
||||
assert pathlib.Path(args.test_dir).exists(), args.test_dir
|
||||
assert Path(args.filename).exists(), args.filename
|
||||
assert Path(args.test_dir).exists(), args.test_dir
|
||||
dynamo38, dynamo311 = download_reports(args.commit, ("dynamo38", "dynamo311"))
|
||||
update(args.filename, args.test_dir, dynamo38, dynamo311, args.also_remove_skips)
|
||||
|
@ -1,14 +1,15 @@
|
||||
#!/usr/bin/env python3
|
||||
# Owner(s): ["oncall: distributed"]
|
||||
|
||||
import pathlib
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch import nn, Tensor
|
||||
|
||||
|
||||
if not dist.is_available():
|
||||
print("Distributed not available, skipping tests", file=sys.stderr)
|
||||
sys.exit(0)
|
||||
@ -45,7 +46,7 @@ class TestInstantiator(TestCase):
|
||||
self.assertEqual(return_type_str, "Tuple[Tensor, int, str]")
|
||||
|
||||
def test_instantiate_scripted_remote_module_template(self):
|
||||
dir_path = pathlib.Path(instantiator.INSTANTIATED_TEMPLATE_DIR_PATH)
|
||||
dir_path = Path(instantiator.INSTANTIATED_TEMPLATE_DIR_PATH)
|
||||
|
||||
# Cleanup.
|
||||
file_paths = dir_path.glob(f"{instantiator._FILE_PREFIX}*.py")
|
||||
@ -69,7 +70,7 @@ class TestInstantiator(TestCase):
|
||||
self.assertEqual(num_files_after, 1)
|
||||
|
||||
def test_instantiate_non_scripted_remote_module_template(self):
|
||||
dir_path = pathlib.Path(instantiator.INSTANTIATED_TEMPLATE_DIR_PATH)
|
||||
dir_path = Path(instantiator.INSTANTIATED_TEMPLATE_DIR_PATH)
|
||||
|
||||
# Cleanup.
|
||||
file_paths = dir_path.glob(f"{instantiator._FILE_PREFIX}*.py")
|
||||
|
@ -7,10 +7,10 @@ with test_sym_bool)
|
||||
# Owner(s): ["oncall: export"]
|
||||
import copy
|
||||
import io
|
||||
import pathlib
|
||||
import tempfile
|
||||
import unittest
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch._dynamo as torchdynamo
|
||||
@ -38,7 +38,6 @@ from torch.testing._internal.common_utils import (
|
||||
TemporaryFileName,
|
||||
TestCase,
|
||||
)
|
||||
|
||||
from torch.testing._internal.torchbind_impls import init_torchbind_implementations
|
||||
|
||||
|
||||
@ -1052,7 +1051,7 @@ class TestSaveLoad(TestCase):
|
||||
ep = export(f, inp)
|
||||
|
||||
with TemporaryFileName() as fname:
|
||||
path = pathlib.Path(fname)
|
||||
path = Path(fname)
|
||||
save(ep, path)
|
||||
loaded_ep = load(path)
|
||||
|
||||
|
@ -1,16 +1,17 @@
|
||||
# Owner(s): ["module: inductor"]
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from torch._inductor import config, test_operators
|
||||
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
|
||||
|
||||
|
||||
try:
|
||||
try:
|
||||
from . import test_torchinductor
|
||||
@ -22,7 +23,7 @@ except unittest.SkipTest:
|
||||
raise
|
||||
|
||||
|
||||
def filesize(filename: pathlib.Path):
|
||||
def filesize(filename: Path):
|
||||
assert filename.exists(), f"{filename} is missing"
|
||||
return os.stat(filename).st_size
|
||||
|
||||
@ -43,7 +44,7 @@ class TestDebugTrace(test_torchinductor.TestCase):
|
||||
self.assertEqual(len(cm.output), 1)
|
||||
m = re.match(r"WARNING.* debug trace: (.*)", cm.output[0])
|
||||
self.assertTrue(m)
|
||||
filename = pathlib.Path(m.group(1))
|
||||
filename = Path(m.group(1))
|
||||
self.assertTrue(filename.is_dir())
|
||||
self.assertGreater(filesize(filename / "fx_graph_readable.py"), 512)
|
||||
self.assertGreater(filesize(filename / "fx_graph_runnable.py"), 512)
|
||||
|
@ -2,14 +2,15 @@
|
||||
|
||||
import io
|
||||
import os
|
||||
import pathlib
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import NamedTuple, Optional
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.testing._internal.common_utils import skipIfTorchDynamo, TemporaryFileName
|
||||
|
||||
|
||||
# Make the helper files in test/ importable
|
||||
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
||||
sys.path.append(pytorch_test_dir)
|
||||
@ -397,7 +398,7 @@ class TestSaveLoad(JitTestCase):
|
||||
|
||||
# Save then load.
|
||||
with TemporaryFileName() as fname:
|
||||
path = pathlib.Path(fname)
|
||||
path = Path(fname)
|
||||
m.save(path)
|
||||
m2 = torch.jit.load(path)
|
||||
|
||||
@ -624,7 +625,7 @@ class TestSaveLoad(JitTestCase):
|
||||
traced_module = torch.jit.trace(module, input1)
|
||||
traced_inputs = list(traced_module.graph.inputs())
|
||||
with TemporaryFileName() as fname:
|
||||
path = pathlib.Path(fname)
|
||||
path = Path(fname)
|
||||
traced_module.save(path)
|
||||
print(traced_module.graph)
|
||||
loaded_module = torch.jit.load(path, _restore_shapes=True)
|
||||
@ -640,7 +641,7 @@ class TestSaveLoad(JitTestCase):
|
||||
traced_module._c._retrieve_traced_inputs()["forward"], [input_tensor]
|
||||
)
|
||||
with TemporaryFileName() as fname:
|
||||
path = pathlib.Path(fname)
|
||||
path = Path(fname)
|
||||
traced_module.save(path)
|
||||
loaded_module = torch.jit.load(path, _restore_shapes=True)
|
||||
loaded_inputs = list(loaded_module.graph.inputs())
|
||||
@ -659,7 +660,7 @@ class TestSaveLoad(JitTestCase):
|
||||
self.assertEqual(len(traced_module._c._retrieve_traced_inputs()), 0)
|
||||
|
||||
with TemporaryFileName() as fname:
|
||||
path = pathlib.Path(fname)
|
||||
path = Path(fname)
|
||||
traced_module.save(path)
|
||||
loaded_module = torch.jit.load(path, _restore_shapes=True)
|
||||
loaded_inputs = list(loaded_module.graph.inputs())
|
||||
@ -1055,7 +1056,7 @@ class TestSaveLoadFlatbuffer(JitTestCase):
|
||||
|
||||
# Save then load.
|
||||
with TemporaryFileName() as fname:
|
||||
path = pathlib.Path(fname)
|
||||
path = Path(fname)
|
||||
torch.jit.save_jit_module_to_flatbuffer(m, path)
|
||||
m2 = torch.jit.load(path)
|
||||
|
||||
|
@ -3,7 +3,7 @@
|
||||
import functools
|
||||
import itertools
|
||||
import os
|
||||
import pathlib
|
||||
from pathlib import Path
|
||||
from typing import Sequence
|
||||
from unittest import skip
|
||||
|
||||
@ -20,10 +20,10 @@ from torch.testing._internal.common_device_type import (
|
||||
ops,
|
||||
)
|
||||
from torch.testing._internal.common_methods_invocations import op_db
|
||||
|
||||
from torch.testing._internal.common_utils import run_tests, TestCase
|
||||
from torch.testing._internal.jit_utils import JitTestCase
|
||||
|
||||
|
||||
torch._lazy.ts_backend.init()
|
||||
|
||||
|
||||
@ -36,7 +36,7 @@ def remove_suffixes(l):
|
||||
|
||||
|
||||
def init_lists():
|
||||
path_to_script = pathlib.Path(os.path.abspath(os.path.dirname(__file__)))
|
||||
path_to_script = Path(os.path.abspath(os.path.dirname(__file__)))
|
||||
TS_NATIVE_FUNCTIONS_PATH = (
|
||||
path_to_script.parent.parent / "aten/src/ATen/native/ts_native_functions.yaml"
|
||||
)
|
||||
|
@ -5,7 +5,6 @@ import copy
|
||||
import glob
|
||||
import json
|
||||
import os
|
||||
import pathlib
|
||||
import re
|
||||
import shutil
|
||||
import signal
|
||||
@ -16,6 +15,7 @@ import time
|
||||
from collections import defaultdict
|
||||
from contextlib import ExitStack
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Any, cast, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
|
||||
|
||||
import pkg_resources
|
||||
@ -38,7 +38,7 @@ from torch.testing._internal.common_utils import (
|
||||
TEST_WITH_SLOW_GRADCHECK,
|
||||
)
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent
|
||||
|
||||
# using tools/ to optimize test run.
|
||||
sys.path.insert(0, str(REPO_ROOT))
|
||||
@ -61,7 +61,6 @@ from tools.testing.target_determination.heuristics.previously_failed_in_pr impor
|
||||
gen_additional_test_failures_file,
|
||||
)
|
||||
from tools.testing.target_determination.heuristics.utils import get_pr_number
|
||||
|
||||
from tools.testing.test_run import TestRun
|
||||
from tools.testing.test_selections import (
|
||||
calculate_shards,
|
||||
@ -71,6 +70,7 @@ from tools.testing.test_selections import (
|
||||
THRESHOLD,
|
||||
)
|
||||
|
||||
|
||||
HAVE_TEST_SELECTION_TOOLS = True
|
||||
# Make sure to remove REPO_ROOT after import is done
|
||||
sys.path.remove(str(REPO_ROOT))
|
||||
@ -465,7 +465,7 @@ def run_test(
|
||||
)
|
||||
else:
|
||||
cpp_test = os.path.join(
|
||||
pathlib.Path(test_directory).parent,
|
||||
Path(test_directory).parent,
|
||||
CPP_TEST_PATH,
|
||||
test_file.replace(f"{CPP_TEST_PREFIX}/", ""),
|
||||
)
|
||||
@ -800,11 +800,9 @@ def run_doctests(test_module, test_directory, options):
|
||||
Assumes the incoming test module is called doctest, and simply executes the
|
||||
xdoctest runner on the torch library itself.
|
||||
"""
|
||||
import pathlib
|
||||
|
||||
import xdoctest
|
||||
|
||||
pkgpath = pathlib.Path(torch.__file__).parent
|
||||
pkgpath = Path(torch.__file__).parent
|
||||
|
||||
exclude_module_list = ["torch._vendor.*"]
|
||||
enabled = {
|
||||
|
@ -1,40 +1,58 @@
|
||||
# Owner(s): ["module: serialization"]
|
||||
|
||||
import torch
|
||||
import unittest
|
||||
import io
|
||||
import tempfile
|
||||
import os
|
||||
import gc
|
||||
import sys
|
||||
import zipfile
|
||||
import warnings
|
||||
import gzip
|
||||
import copy
|
||||
import gc
|
||||
import gzip
|
||||
import io
|
||||
import os
|
||||
import pickle
|
||||
import shutil
|
||||
import pathlib
|
||||
import platform
|
||||
import shutil
|
||||
import sys
|
||||
import tempfile
|
||||
import unittest
|
||||
import warnings
|
||||
import zipfile
|
||||
from collections import namedtuple, OrderedDict
|
||||
from copy import deepcopy
|
||||
from itertools import product
|
||||
from pathlib import Path
|
||||
|
||||
from torch._utils_internal import get_file_path_2
|
||||
import torch
|
||||
from torch._utils import _rebuild_tensor
|
||||
from torch.utils._import_utils import import_dill
|
||||
from torch.serialization import check_module_version_greater_or_equal, get_default_load_endianness, \
|
||||
set_default_load_endianness, LoadEndianness, SourceChangeWarning
|
||||
|
||||
from torch.testing._internal.common_utils import (
|
||||
IS_FILESYSTEM_UTF8_ENCODING, TemporaryDirectoryName,
|
||||
TestCase, IS_FBCODE, IS_WINDOWS, TEST_DILL, run_tests, download_file, BytesIOContext, TemporaryFileName,
|
||||
parametrize, instantiate_parametrized_tests, AlwaysWarnTypedStorageRemoval, serialTest, skipIfTorchDynamo)
|
||||
from torch._utils_internal import get_file_path_2
|
||||
from torch.serialization import (
|
||||
check_module_version_greater_or_equal,
|
||||
get_default_load_endianness,
|
||||
LoadEndianness,
|
||||
set_default_load_endianness,
|
||||
SourceChangeWarning,
|
||||
)
|
||||
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
||||
from torch.testing._internal.common_dtype import all_types_and_complex_and
|
||||
from torch.testing._internal.common_utils import (
|
||||
AlwaysWarnTypedStorageRemoval,
|
||||
BytesIOContext,
|
||||
download_file,
|
||||
instantiate_parametrized_tests,
|
||||
IS_FBCODE,
|
||||
IS_FILESYSTEM_UTF8_ENCODING,
|
||||
IS_WINDOWS,
|
||||
parametrize,
|
||||
run_tests,
|
||||
serialTest,
|
||||
skipIfTorchDynamo,
|
||||
TemporaryDirectoryName,
|
||||
TemporaryFileName,
|
||||
TEST_DILL,
|
||||
TestCase,
|
||||
)
|
||||
from torch.testing._internal.two_tensor import TwoTensor # noqa: F401
|
||||
from torch.utils._import_utils import import_dill
|
||||
|
||||
|
||||
if not IS_WINDOWS:
|
||||
from mmap import MAP_SHARED, MAP_PRIVATE
|
||||
from mmap import MAP_PRIVATE, MAP_SHARED
|
||||
else:
|
||||
MAP_SHARED, MAP_PRIVATE = None, None
|
||||
|
||||
@ -988,7 +1006,7 @@ class TestSerialization(TestCase, SerializationMixin):
|
||||
model = torch.nn.Conv2d(20, 3200, kernel_size=3)
|
||||
|
||||
with TemporaryFileName() as fname:
|
||||
path = pathlib.Path(fname)
|
||||
path = Path(fname)
|
||||
torch.save(model.state_dict(), path)
|
||||
torch.load(path, weights_only=weights_only)
|
||||
|
||||
@ -4008,7 +4026,7 @@ class TestSerialization(TestCase, SerializationMixin):
|
||||
finally:
|
||||
set_default_load_endianness(current_load_endian)
|
||||
|
||||
@parametrize('path_type', (str, pathlib.Path))
|
||||
@parametrize('path_type', (str, Path))
|
||||
@parametrize('weights_only', (True, False))
|
||||
@unittest.skipIf(IS_WINDOWS, "NamedTemporaryFile on windows")
|
||||
def test_serialization_mmap_loading(self, weights_only, path_type):
|
||||
|
@ -1,13 +1,16 @@
|
||||
# Owner(s): ["module: unknown"]
|
||||
|
||||
import expecttest
|
||||
import io
|
||||
import numpy as np
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
import tempfile
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
|
||||
import expecttest
|
||||
import numpy as np
|
||||
|
||||
|
||||
TEST_TENSORBOARD = True
|
||||
try:
|
||||
@ -36,14 +39,15 @@ skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib")
|
||||
import torch
|
||||
from torch.testing._internal.common_utils import (
|
||||
instantiate_parametrized_tests,
|
||||
IS_MACOS,
|
||||
IS_WINDOWS,
|
||||
parametrize,
|
||||
TestCase,
|
||||
run_tests,
|
||||
TEST_WITH_CROSSREF,
|
||||
IS_WINDOWS,
|
||||
IS_MACOS,
|
||||
TestCase,
|
||||
)
|
||||
|
||||
|
||||
def tensor_N(shape, dtype=float):
|
||||
numel = np.prod(shape)
|
||||
x = (np.arange(numel, dtype=dtype)).reshape(shape)
|
||||
@ -75,15 +79,16 @@ class BaseTestCase(TestCase):
|
||||
|
||||
|
||||
if TEST_TENSORBOARD:
|
||||
from tensorboard.compat.proto.graph_pb2 import GraphDef
|
||||
from torch.utils.tensorboard import summary, SummaryWriter
|
||||
from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC
|
||||
from tensorboard.compat.proto.types_pb2 import DataType
|
||||
from torch.utils.tensorboard.summary import int_to_half, tensor_proto
|
||||
from torch.utils.tensorboard._convert_np import make_np
|
||||
from torch.utils.tensorboard._pytorch_graph import graph
|
||||
from google.protobuf import text_format
|
||||
from PIL import Image
|
||||
from tensorboard.compat.proto.graph_pb2 import GraphDef
|
||||
from tensorboard.compat.proto.types_pb2 import DataType
|
||||
|
||||
from torch.utils.tensorboard import summary, SummaryWriter
|
||||
from torch.utils.tensorboard._convert_np import make_np
|
||||
from torch.utils.tensorboard._pytorch_graph import graph
|
||||
from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC
|
||||
from torch.utils.tensorboard.summary import int_to_half, tensor_proto
|
||||
|
||||
class TestTensorBoardPyTorchNumpy(BaseTestCase):
|
||||
def test_pytorch_np(self):
|
||||
@ -289,9 +294,8 @@ class TestTensorBoardSummaryWriter(BaseTestCase):
|
||||
self.assertTrue(passed)
|
||||
|
||||
def test_pathlib(self):
|
||||
import pathlib
|
||||
with tempfile.TemporaryDirectory(prefix="test_tensorboard_pathlib") as d:
|
||||
p = pathlib.Path(d)
|
||||
p = Path(d)
|
||||
with SummaryWriter(p) as writer:
|
||||
writer.add_scalar('test', 1)
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
import pathlib
|
||||
import sys
|
||||
import textwrap
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def check(path):
|
||||
@ -62,7 +62,7 @@ if __name__ == "__main__":
|
||||
if len(argv) != 2:
|
||||
raise ValueError("Usage : python check_tests_conform path/to/file/or/dir")
|
||||
|
||||
path = pathlib.Path(argv[1])
|
||||
path = Path(argv[1])
|
||||
|
||||
if path.is_dir():
|
||||
# run for all files in the directory (no subdirs)
|
||||
|
@ -9,16 +9,14 @@ import itertools
|
||||
import mmap
|
||||
import operator
|
||||
import os
|
||||
|
||||
import pathlib
|
||||
import sys
|
||||
import tempfile
|
||||
import warnings
|
||||
import weakref
|
||||
from contextlib import contextmanager
|
||||
from decimal import Decimal
|
||||
from pathlib import Path
|
||||
from tempfile import mkstemp
|
||||
|
||||
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
|
||||
|
||||
import numpy
|
||||
@ -37,6 +35,7 @@ from torch.testing._internal.common_utils import (
|
||||
xpassIfTorchDynamo,
|
||||
)
|
||||
|
||||
|
||||
# If we are going to trace through these, we should use NumPy
|
||||
# If testing on eager mode, we use torch._numpy
|
||||
if TEST_WITH_TORCHDYNAMO:
|
||||
@ -3866,7 +3865,7 @@ class TestIO(TestCase):
|
||||
assert_array_equal(y, x.flat)
|
||||
|
||||
def test_roundtrip_dump_pathlib(self, x, tmp_filename):
|
||||
p = pathlib.Path(tmp_filename)
|
||||
p = Path(tmp_filename)
|
||||
x.dump(p)
|
||||
y = np.load(p, allow_pickle=True)
|
||||
assert_array_equal(y, x)
|
||||
|
@ -12,10 +12,10 @@ Run with no arguments.
|
||||
import argparse
|
||||
import datetime
|
||||
import os
|
||||
import pathlib
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from subprocess import DEVNULL
|
||||
from typing import Any
|
||||
|
||||
@ -30,7 +30,7 @@ def read_sub_write(path: str, prefix_pat: str, new_default: int) -> None:
|
||||
|
||||
|
||||
def main(args: Any) -> None:
|
||||
pytorch_dir = pathlib.Path(__file__).parent.parent.parent.resolve()
|
||||
pytorch_dir = Path(__file__).parent.parent.parent.resolve()
|
||||
onnx_dir = pytorch_dir / "third_party" / "onnx"
|
||||
os.chdir(onnx_dir)
|
||||
|
||||
|
@ -2,8 +2,8 @@ from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import pathlib
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, cast
|
||||
|
||||
import yaml
|
||||
@ -19,7 +19,7 @@ TAGS_PATH = "aten/src/ATen/native/tags.yaml"
|
||||
|
||||
|
||||
def generate_code(
|
||||
gen_dir: pathlib.Path,
|
||||
gen_dir: Path,
|
||||
native_functions_path: str | None = None,
|
||||
tags_path: str | None = None,
|
||||
install_dir: str | None = None,
|
||||
@ -41,7 +41,7 @@ def generate_code(
|
||||
autograd_gen_dir = os.path.join(install_dir, "autograd", "generated")
|
||||
for d in (autograd_gen_dir, python_install_dir):
|
||||
os.makedirs(d, exist_ok=True)
|
||||
autograd_dir = os.fspath(pathlib.Path(__file__).parent.parent / "autograd")
|
||||
autograd_dir = os.fspath(Path(__file__).parent.parent / "autograd")
|
||||
|
||||
if subset == "pybindings" or not subset:
|
||||
gen_autograd_python(
|
||||
@ -133,8 +133,8 @@ def main() -> None:
|
||||
parser.add_argument("--tags-path")
|
||||
parser.add_argument(
|
||||
"--gen-dir",
|
||||
type=pathlib.Path,
|
||||
default=pathlib.Path("."),
|
||||
type=Path,
|
||||
default=Path("."),
|
||||
help="Root directory where to install files. Defaults to the current working directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
@ -1,7 +1,7 @@
|
||||
import pathlib
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent
|
||||
sys.path.append(str(REPO_ROOT))
|
||||
from tools.stats.import_test_stats import get_test_class_times, get_test_times
|
||||
|
||||
|
@ -5,12 +5,12 @@ from __future__ import annotations
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
import pathlib
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, cast, Dict
|
||||
from urllib.request import urlopen
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent
|
||||
|
||||
|
||||
def get_disabled_issues() -> list[str]:
|
||||
@ -22,7 +22,7 @@ def get_disabled_issues() -> list[str]:
|
||||
|
||||
SLOW_TESTS_FILE = ".pytorch-slow-tests.json"
|
||||
DISABLED_TESTS_FILE = ".pytorch-disabled-tests.json"
|
||||
ADDITIONAL_CI_FILES_FOLDER = pathlib.Path(".additional_ci_files")
|
||||
ADDITIONAL_CI_FILES_FOLDER = Path(".additional_ci_files")
|
||||
TEST_TIMES_FILE = "test-times.json"
|
||||
TEST_CLASS_TIMES_FILE = "test-class-times.json"
|
||||
TEST_FILE_RATINGS_FILE = "test-file-ratings.json"
|
||||
@ -36,7 +36,7 @@ FILE_CACHE_LIFESPAN_SECONDS = datetime.timedelta(hours=3).seconds
|
||||
|
||||
|
||||
def fetch_and_cache(
|
||||
dirpath: str | pathlib.Path,
|
||||
dirpath: str | Path,
|
||||
name: str,
|
||||
url: str,
|
||||
process_fn: Callable[[dict[str, Any]], dict[str, Any]],
|
||||
@ -44,7 +44,7 @@ def fetch_and_cache(
|
||||
"""
|
||||
This fetch and cache utils allows sharing between different process.
|
||||
"""
|
||||
pathlib.Path(dirpath).mkdir(exist_ok=True)
|
||||
Path(dirpath).mkdir(exist_ok=True)
|
||||
|
||||
path = os.path.join(dirpath, name)
|
||||
print(f"Downloading {url} to {path}")
|
||||
@ -52,7 +52,7 @@ def fetch_and_cache(
|
||||
def is_cached_file_valid() -> bool:
|
||||
# Check if the file is new enough (see: FILE_CACHE_LIFESPAN_SECONDS). A real check
|
||||
# could make a HEAD request and check/store the file's ETag
|
||||
fname = pathlib.Path(path)
|
||||
fname = Path(path)
|
||||
now = datetime.datetime.now()
|
||||
mtime = datetime.datetime.fromtimestamp(fname.stat().st_mtime)
|
||||
diff = now - mtime
|
||||
|
@ -3,13 +3,13 @@ from __future__ import annotations
|
||||
|
||||
import io
|
||||
import json
|
||||
import pathlib
|
||||
import sys
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from unittest import mock
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent.parent
|
||||
sys.path.append(str(REPO_ROOT))
|
||||
from tools.test.heuristics.test_interface import TestTD
|
||||
from tools.testing.target_determination.determinator import TestPrioritizations
|
||||
|
@ -1,11 +1,11 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import pathlib
|
||||
import sys
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent.parent
|
||||
sys.path.append(str(REPO_ROOT))
|
||||
import tools.testing.target_determination.heuristics.interface as interface
|
||||
from tools.testing.test_run import TestRun
|
||||
|
@ -1,12 +1,12 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import pathlib
|
||||
import sys
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent.parent
|
||||
sys.path.append(str(REPO_ROOT))
|
||||
import tools.testing.target_determination.heuristics.utils as utils
|
||||
from tools.testing.test_run import TestRun
|
||||
|
@ -1,8 +1,8 @@
|
||||
import pathlib
|
||||
import sys
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent
|
||||
try:
|
||||
# using tools/ to optimize test run.
|
||||
sys.path.append(str(REPO_ROOT))
|
||||
|
@ -1,13 +1,13 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import functools
|
||||
import pathlib
|
||||
import random
|
||||
import sys
|
||||
import unittest
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent
|
||||
try:
|
||||
# using tools/ to optimize test run.
|
||||
sys.path.append(str(REPO_ROOT))
|
||||
|
@ -2,13 +2,13 @@ from __future__ import annotations
|
||||
|
||||
import decimal
|
||||
import inspect
|
||||
import pathlib
|
||||
import sys
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from unittest import mock
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent
|
||||
sys.path.insert(0, str(REPO_ROOT))
|
||||
from tools.stats.upload_metrics import add_global_metric, emit_metric
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
import json
|
||||
import os
|
||||
import pathlib
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent
|
||||
sys.path.insert(0, str(REPO_ROOT))
|
||||
|
||||
from tools.stats.import_test_stats import (
|
||||
|
@ -4,15 +4,15 @@ from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import fnmatch
|
||||
import pathlib
|
||||
import subprocess
|
||||
import textwrap
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).parent.parent.parent
|
||||
CONFIG_YML = REPO_ROOT / ".circleci" / "config.yml"
|
||||
WORKFLOWS_DIR = REPO_ROOT / ".github" / "workflows"
|
||||
|
||||
|
@ -2,12 +2,12 @@ from __future__ import annotations
|
||||
|
||||
import modulefinder
|
||||
import os
|
||||
import pathlib
|
||||
import sys
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent
|
||||
|
||||
# These tests are slow enough that it's worth calculating whether the patch
|
||||
# touched any related files first. This list was manually generated, but for every
|
||||
|
@ -2,10 +2,10 @@ from __future__ import annotations
|
||||
|
||||
import json
|
||||
import os
|
||||
import pathlib
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent.parent
|
||||
REPO_ROOT = Path(__file__).resolve().parent.parent.parent.parent
|
||||
|
||||
|
||||
def gen_ci_artifact(included: list[Any], excluded: list[Any]) -> None:
|
||||
|
@ -1,14 +1,15 @@
|
||||
# mypy: allow-untyped-defs
|
||||
import inspect
|
||||
import pathlib
|
||||
import sys
|
||||
import typing
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from types import CodeType
|
||||
from typing import Dict, Iterable, List, Optional
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
_IS_MONKEYTYPE_INSTALLED = True
|
||||
try:
|
||||
import monkeytype # type: ignore[import]
|
||||
@ -189,5 +190,5 @@ def jit_code_filter(code: CodeType) -> bool:
|
||||
):
|
||||
return False
|
||||
|
||||
filename = pathlib.Path(code.co_filename).resolve()
|
||||
filename = Path(code.co_filename).resolve()
|
||||
return not any(_startswith(filename, lib_path) for lib_path in LIB_PATHS)
|
||||
|
@ -1,7 +1,7 @@
|
||||
# mypy: allow-untyped-defs
|
||||
import os
|
||||
import pathlib
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Set, Tuple, Union
|
||||
|
||||
|
||||
@ -211,7 +211,7 @@ def get_method_definitions(
|
||||
# 3. Remove first argument after self (unless it is "*datapipes"), default args, and spaces
|
||||
"""
|
||||
if root == "":
|
||||
root = str(pathlib.Path(__file__).parent.resolve())
|
||||
root = str(Path(__file__).parent.resolve())
|
||||
file_path = [file_path] if isinstance(file_path, str) else file_path
|
||||
file_path = [os.path.join(root, path) for path in file_path]
|
||||
file_paths = find_file_paths(
|
||||
@ -288,7 +288,7 @@ def main() -> None:
|
||||
mapDP_method_to_special_output_type,
|
||||
)
|
||||
|
||||
path = pathlib.Path(__file__).parent.resolve()
|
||||
path = Path(__file__).parent.resolve()
|
||||
replacements = [
|
||||
("${IterDataPipeMethods}", iter_method_definitions, 4),
|
||||
("${MapDataPipeMethods}", map_method_definitions, 4),
|
||||
|
@ -64,21 +64,18 @@ Possible improvements:
|
||||
(they probably don't work at all right now).
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
import io
|
||||
import pathlib
|
||||
import re
|
||||
import argparse
|
||||
import zipfile
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import pickle
|
||||
import pprint
|
||||
import re
|
||||
import sys
|
||||
import urllib.parse
|
||||
|
||||
from typing import (
|
||||
Dict,
|
||||
)
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import torch.utils.show_pickle
|
||||
|
||||
@ -201,7 +198,7 @@ def get_model_info(
|
||||
file_size = path_or_file.stat().st_size # type: ignore[attr-defined]
|
||||
elif isinstance(path_or_file, str):
|
||||
default_title = path_or_file
|
||||
file_size = pathlib.Path(path_or_file).stat().st_size
|
||||
file_size = Path(path_or_file).stat().st_size
|
||||
else:
|
||||
default_title = "buffer"
|
||||
path_or_file.seek(0, io.SEEK_END)
|
||||
|
@ -2,9 +2,9 @@ from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import pathlib
|
||||
import re
|
||||
from collections import Counter, defaultdict, namedtuple
|
||||
from pathlib import Path
|
||||
from typing import Sequence
|
||||
|
||||
import yaml
|
||||
@ -529,7 +529,7 @@ def run(
|
||||
source_yaml: str, output_dir: str, dry_run: bool, impl_path: str | None = None
|
||||
) -> None:
|
||||
# Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py
|
||||
pytorch_root = pathlib.Path(__file__).parent.parent.absolute()
|
||||
pytorch_root = Path(__file__).parent.parent.absolute()
|
||||
template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates")
|
||||
|
||||
def make_file_manager(install_dir: str) -> FileManager:
|
||||
|
@ -2,8 +2,8 @@ from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import pathlib
|
||||
from collections import namedtuple
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Iterable, Iterator, Sequence
|
||||
|
||||
import yaml
|
||||
@ -252,7 +252,7 @@ def main() -> None:
|
||||
options = parser.parse_args()
|
||||
|
||||
# Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py
|
||||
torch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
|
||||
torch_root = Path(__file__).parent.parent.parent.absolute()
|
||||
aten_path = str(torch_root / "aten" / "src" / "ATen")
|
||||
lazy_ir_generator: type[GenLazyIR] = default_args.lazy_ir_generator
|
||||
if options.gen_ts_lowerings:
|
||||
|
Reference in New Issue
Block a user