Parity tests for functional optimizer step_param (#61756)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61756

DDP will support running optimizer as communication hook with
optimizers that support a per-parameter/gradient step function `step_param`.
Add parity tests as we implement more optimizers that support step_param to
ensure parity with regular optimizers.
ghstack-source-id: 134330378

Test Plan: Ci

Reviewed By: SciPioneer

Differential Revision: D29727549

fbshipit-source-id: 18977c896f12b8e478298488b298fd107affcf5f
This commit is contained in:
Rohan Varma
2021-07-26 18:59:17 -07:00
committed by Facebook GitHub Bot
parent b6d10a3a27
commit 69adb21940
2 changed files with 97 additions and 0 deletions

View File

@ -0,0 +1,96 @@
import unittest
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import SGD
from torch.testing._internal.common_utils import TestCase, run_tests, IS_WINDOWS
if not IS_WINDOWS:
from torch.distributed.optim.functional_sgd import _FunctionalSGD
_SUPPORTED_OPTIM_MAPPING = {
SGD: _FunctionalSGD,
}
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
torch.manual_seed(0)
self.lin1 = nn.Linear(3, 3, bias=False)
self.lin2 = nn.Linear(3, 3, bias=False)
def forward(self, t1):
return self.lin2(F.relu(self.lin1(t1)))
class TestFunctionalOptimParity(TestCase):
def _validate_parameters(self, params_1, params_2):
for p1, p2 in zip(params_1, params_2):
self.assertEqual(p1, p2)
def _test_functional_optim_parity(self, optim_cls, *args, **kwargs):
module_optim = MyModule()
module_functional = MyModule()
optim_params = module_optim.parameters()
functional_params = module_functional.parameters()
optim = optim_cls(optim_params, *args, **kwargs)
functional_optim_cls = _SUPPORTED_OPTIM_MAPPING.get(optim_cls, None)
if not functional_optim_cls:
raise ValueError(f"Functional optimizer not implemented for {optim_cls}")
optim_functional = functional_optim_cls([], *args, allow_empty_param_list=True)
if not hasattr(optim_functional, "step_param"):
raise ValueError(
f"Functional optimizer class {optim_functional} must implement step_param method."
)
# Initial weights should match
self._validate_parameters(
module_optim.parameters(), module_functional.parameters()
)
# Save old parameters to verify optimizer modifies them.
old_module_optim_params = [
param.clone().detach() for param in module_optim.parameters()
]
old_module_functional_params = [
param.clone().detach() for param in module_functional.parameters()
]
t1 = torch.randn(3, 3)
for _ in range(10):
module_optim.zero_grad()
module_functional.zero_grad()
# Forward + Backward
optim_out = module_optim(t1).sum()
functional_out = module_functional(t1).sum()
optim_out.backward()
functional_out.backward()
# Optimizer step
optim.step()
# Functional optimizer step_param
for param in module_functional.parameters():
grad = param.grad
optim_functional.step_param(param, grad)
# Validate parameters are equal
for optim_param, functional_param in zip(
module_optim.parameters(), module_functional.parameters()
):
self.assertEqual(optim_param, functional_param)
# Validate parameters are modified.
for i, (optim_param, functional_param) in enumerate(
zip(module_optim.parameters(), module_functional.parameters())
):
self.assertNotEqual(old_module_optim_params[i], optim_param)
self.assertNotEqual(old_module_functional_params[i], functional_param)
@unittest.skipIf(
IS_WINDOWS,
"Functional optimizer not support on windows, see https://github.com/pytorch/pytorch/issues/62137",
)
def test_functional_optim_parity(self):
self._test_functional_optim_parity(SGD, 1e-2)
if __name__ == "__main__":
run_tests()