Update (base update)

[ghstack-poisoned]
This commit is contained in:
Pearu Peterson
2025-10-19 12:54:52 +03:00
502 changed files with 6110 additions and 2420 deletions

View File

@ -113,6 +113,7 @@ case "$tag" in
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INSTALL_MINGW=yes
;;
pytorch-linux-jammy-cuda13.0-cudnn9-py3-gcc11)
CUDA_VERSION=13.0.0
@ -361,6 +362,7 @@ docker build \
--build-arg "OPENBLAS=${OPENBLAS:-}" \
--build-arg "SKIP_SCCACHE_INSTALL=${SKIP_SCCACHE_INSTALL:-}" \
--build-arg "SKIP_LLVM_SRC_BUILD_INSTALL=${SKIP_LLVM_SRC_BUILD_INSTALL:-}" \
--build-arg "INSTALL_MINGW=${INSTALL_MINGW:-}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \

View File

@ -0,0 +1,10 @@
#!/bin/bash
set -ex
# Install MinGW-w64 for Windows cross-compilation
apt-get update
apt-get install -y g++-mingw-w64-x86-64-posix
echo "MinGW-w64 installed successfully"
x86_64-w64-mingw32-g++ --version

View File

@ -20,7 +20,7 @@ pip_install \
pip_install coloredlogs packaging
pip_install onnxruntime==1.23.0
pip_install onnxscript==0.5.3
pip_install onnxscript==0.5.4
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/

View File

@ -39,9 +39,13 @@ case ${DOCKER_TAG_PREFIX} in
DOCKER_GPU_BUILD_ARG=""
;;
rocm*)
# we want the patch version of 7.0 instead
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete

View File

@ -75,9 +75,13 @@ case ${image} in
DOCKERFILE_SUFFIX="_cuda_aarch64"
;;
manylinux2_28-builder:rocm*)
# we want the patch version of 7.0 instead
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
fi
TARGET=rocm_final
MANY_LINUX_VERSION="2_28"

View File

@ -103,6 +103,11 @@ COPY ci_commit_pins/torchbench.txt torchbench.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt torchbench.txt
ARG INSTALL_MINGW
COPY ./common/install_mingw.sh install_mingw.sh
RUN if [ -n "${INSTALL_MINGW}" ]; then bash ./install_mingw.sh; fi
RUN rm install_mingw.sh
ARG TRITON
ARG TRITON_CPU

View File

@ -57,8 +57,8 @@ def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules
logger.info("Successfully cloned %s", target)
return r, commit
except GitCommandError as e:
logger.error("Git operation failed: %s", e)
except GitCommandError:
logger.exception("Git operation failed")
raise

View File

@ -485,6 +485,22 @@ test_inductor_aoti() {
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference cpp/test_vec_half_AVX2 -dist=loadfile
}
test_inductor_aoti_cross_compile_for_windows() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
# Set WINDOWS_CUDA_HOME environment variable
WINDOWS_CUDA_HOME="$(pwd)/win-torch-wheel-extracted"
export WINDOWS_CUDA_HOME
echo "WINDOWS_CUDA_HOME is set to: $WINDOWS_CUDA_HOME"
echo "Contents:"
ls -lah "$(pwd)/win-torch-wheel-extracted/lib/x64/" || true
python test/inductor/test_aoti_cross_compile_windows.py -k compile --package-dir "$TEST_REPORTS_DIR" --win-torch-lib-dir "$(pwd)/win-torch-wheel-extracted/torch/lib"
}
test_inductor_cpp_wrapper_shard() {
if [[ -z "$NUM_TEST_SHARDS" ]]; then
echo "NUM_TEST_SHARDS must be defined to run a Python test shard"
@ -1718,6 +1734,8 @@ elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then
test_inductor_triton_cpu
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then
test_inductor_micro_benchmark
elif [[ "${TEST_CONFIG}" == *aoti_cross_compile_for_windows* ]]; then
test_inductor_aoti_cross_compile_for_windows
elif [[ "${TEST_CONFIG}" == *huggingface* ]]; then
install_torchvision
id=$((SHARD_NUMBER-1))

View File

@ -13,10 +13,6 @@ ignore =
EXE001,
# these ignores are from flake8-bugbear; please fix!
B007,B008,B017,B019,B023,B028,B903,B905,B906,B907,B908,B910
# these ignores are from flake8-comprehensions; please fix!
C407,
# these ignores are from flake8-logging-format; please fix!
G100,G101,G200
# these ignores are from flake8-simplify. please fix or ignore with commented reason
SIM105,SIM108,SIM110,SIM111,SIM113,SIM114,SIM115,SIM116,SIM117,SIM118,SIM119,SIM12,
# SIM104 is already covered by pyupgrade ruff

View File

@ -1 +1 @@
1b013f5b5a87a1882eb143c26d79d091150d6a37
69bbe7363897764f9e758d851cd0340147d27f94

29
.github/labeler.yml vendored
View File

@ -133,3 +133,32 @@
"ciflow/vllm":
- .github/ci_commit_pins/vllm.txt
"ciflow/b200":
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm
"ciflow/h100":
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm
"ciflow/rocm":
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm

View File

@ -79,21 +79,21 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
),
"12.9": (
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | "
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | "
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | "
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | "
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | "
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | "
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | "
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | "
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | "
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'"
),
"13.0": (
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | "

View File

@ -1092,7 +1092,7 @@ class GitHubPR:
editor = node["editor"]
return GitHubComment(
body_text=node["bodyText"],
created_at=node["createdAt"] if "createdAt" in node else "",
created_at=node.get("createdAt", ""),
author_login=node["author"]["login"],
author_url=node["author"].get("url", None),
author_association=node["authorAssociation"],

View File

@ -224,6 +224,46 @@ jobs:
continue-on-error: true
uses: ./.github/actions/download-td-artifacts
- name: Download Windows torch wheel for cross-compilation
if: matrix.win_torch_wheel_artifact != ''
uses: seemethere/download-artifact-s3@1da556a7aa0a088e3153970611f6c432d58e80e6 # v4.2.0
with:
name: ${{ matrix.win_torch_wheel_artifact }}
path: win-torch-wheel
- name: Extract Windows wheel and setup CUDA libraries
if: matrix.win_torch_wheel_artifact != ''
shell: bash
run: |
set -x
# Find the wheel file
WHEEL_FILE=$(find win-torch-wheel -name "*.whl" -type f | head -n 1)
if [ -z "$WHEEL_FILE" ]; then
echo "Error: No wheel file found in win-torch-wheel directory"
exit 1
fi
echo "Found wheel file: $WHEEL_FILE"
# Unzip the wheel file
unzip -q "$WHEEL_FILE" -d win-torch-wheel-extracted
echo "Extracted wheel contents"
# Setup CUDA libraries (cuda.lib and cudart.lib) directory
mkdir -p win-torch-wheel-extracted/lib/x64
if [ -f "win-torch-wheel/cuda.lib" ]; then
mv win-torch-wheel/cuda.lib win-torch-wheel-extracted/lib/x64/
echo "Moved cuda.lib to win-torch-wheel-extracted/lib/x64/"
fi
if [ -f "win-torch-wheel/cudart.lib" ]; then
mv win-torch-wheel/cudart.lib win-torch-wheel-extracted/lib/x64/
echo "Moved cudart.lib to win-torch-wheel-extracted/lib/x64/"
fi
# Verify CUDA libraries are present
echo "CUDA libraries:"
ls -la win-torch-wheel-extracted/lib/x64/ || echo "No CUDA libraries found"
- name: Parse ref
id: parse-ref
run: .github/scripts/parse_ref.py

View File

@ -168,6 +168,31 @@ jobs:
run: |
.ci/pytorch/win-build.sh
# Collect Windows torch libs and CUDA libs for cross-compilation
- name: Collect Windows CUDA libs for cross-compilation
if: steps.build.outcome != 'skipped' && inputs.cuda-version != 'cpu'
shell: bash
run: |
set -ex
# Create directory structure if does not exist
mkdir -p /c/${{ github.run_id }}/build-results
# Copy CUDA libs
CUDA_PATH="/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${{ inputs.cuda-version }}"
if [ -f "${CUDA_PATH}/lib/x64/cuda.lib" ]; then
cp "${CUDA_PATH}/lib/x64/cuda.lib" /c/${{ github.run_id }}/build-results/
fi
if [ -f "${CUDA_PATH}/lib/x64/cudart.lib" ]; then
cp "${CUDA_PATH}/lib/x64/cudart.lib" /c/${{ github.run_id }}/build-results/
fi
# List collected files
echo "Collected CUDA libs:"
ls -lah /c/${{ github.run_id }}/build-results/*.lib
# Upload to github so that people can click and download artifacts
- name: Upload artifacts to s3
if: steps.build.outcome != 'skipped'

View File

@ -224,7 +224,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -473,7 +473,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -722,7 +722,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -971,7 +971,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1220,7 +1220,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1469,7 +1469,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1718,7 +1718,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -259,7 +259,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_10-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_9-test: # Testing
@ -925,7 +925,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_9-test: # Testing
@ -1591,7 +1591,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_9-test: # Testing
@ -2257,7 +2257,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_9-test: # Testing
@ -2923,7 +2923,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13t-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_9-test: # Testing
@ -3589,7 +3589,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda12_9-test: # Testing
@ -4255,7 +4255,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14t-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda12_9-test: # Testing

View File

@ -52,3 +52,27 @@ jobs:
docker-image: ${{ needs.x86-opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.x86-opbenchmark-build.outputs.test-matrix }}
secrets: inherit
aarch64-opbenchmark-build:
if: github.repository_owner == 'pytorch'
name: aarch64-opbenchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-aarch64-py3.10
runner: linux.arm64.m7g.4xlarge
docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc11
test-matrix: |
{ include: [
{ config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.arm64.m8g.4xlarge" },
]}
secrets: inherit
aarch64-opbenchmark-test:
name: aarch64-opbenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: aarch64-opbenchmark-build
with:
build-environment: linux-jammy-aarch64-py3.10
docker-image: ${{ needs.aarch64-opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.aarch64-opbenchmark-build.outputs.test-matrix }}
secrets: inherit

View File

@ -200,6 +200,23 @@ jobs:
cuda-arch-list: '8.0'
secrets: inherit
# Test cross-compiled models with Windows libs extracted from wheel
cross-compile-linux-test:
name: cross-compile-linux-test
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-build
- get-label-type
- win-vs2022-cuda12_8-py3-build
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }}
test-matrix: |
{ include: [
{ config: "aoti_cross_compile_for_windows", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", win_torch_wheel_artifact: "win-vs2022-cuda12.8-py3" },
]}
secrets: inherit
verify-cachebench-cpu-build:
name: verify-cachebench-cpu-build
uses: ./.github/workflows/_linux-build.yml

1
.gitignore vendored
View File

@ -374,6 +374,7 @@ third_party/ruy/
third_party/glog/
# Virtualenv
.venv/
venv/
# Log files

View File

@ -201,3 +201,17 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
/torch/csrc/stable/ @janeyx99 @mikaylagawarecki
/torch/headeronly/ @janeyx99
/torch/header_only_apis.txt @janeyx99
# FlexAttention
/torch/nn/attention/flex_attention.py @drisspg
/torch/_higher_order_ops/flex_attention.py @drisspg
/torch/_inductor/kernel/flex/ @drisspg
/torch/_inductor/codegen/cpp_flex_attention_template.py @drisspg
/test/inductor/test_flex_attention.py @drisspg
/test/inductor/test_flex_decoding.py @drisspg
# Low Precision GEMMs
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
/test/test_scaled_matmul_cuda.py @drisspg @slayton58

View File

@ -289,14 +289,15 @@ IF(USE_FBGEMM_GENAI)
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
set(fbgemm_genai_mx8mx8bf16_grouped
set(fbgemm_genai_cuh
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
"${FBGEMM_GENAI_SRCS}/"
)
target_include_directories(fbgemm_genai PRIVATE
${FBGEMM_THIRD_PARTY}/cutlass/include
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
${fbgemm_genai_mx8mx8bf16_grouped}
${fbgemm_genai_cuh}
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
)

View File

@ -2,7 +2,6 @@
#include <mutex>
#include <ATen/CachedTensorUtils.h>
#include <c10/core/GradMode.h>
#include <c10/util/flat_hash_map.h>
namespace at::autocast {
@ -37,29 +36,10 @@ namespace {
using weakref_type = c10::weak_intrusive_ptr<TensorImpl, UndefinedTensorImpl>;
using val_type = std::tuple<weakref_type, Tensor>;
// We maintain separate caches for gradient-enabled and gradient-disabled modes.
// This ensures that tensors cached in torch.no_grad() (with requires_grad=False)
// are not incorrectly reused in gradient-enabled contexts.
// This fixes issue #158232 while maintaining optimal performance for both modes.
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts_grad_enabled() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts_grad_enabled;
return cached_casts_grad_enabled;
ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts;
return cached_casts;
}
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts_grad_disabled() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts_grad_disabled;
return cached_casts_grad_disabled;
}
// Helper function to get the appropriate cache based on current gradient mode.
// This allows us to cache tensors separately for grad-enabled and grad-disabled contexts,
// preventing incorrect cache hits when gradient mode changes.
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
return at::GradMode::is_enabled() ?
get_cached_casts_grad_enabled() :
get_cached_casts_grad_disabled();
}
std::mutex cached_casts_mutex;
@ -106,9 +86,7 @@ thread_local bool cache_enabled = true;
void clear_cache() {
const std::lock_guard<std::mutex> lock(cached_casts_mutex);
// Clear both caches to ensure consistent behavior regardless of current gradient mode
get_cached_casts_grad_enabled().clear();
get_cached_casts_grad_disabled().clear();
get_cached_casts().clear();
}
int increment_nesting() {
@ -143,11 +121,6 @@ Tensor cached_cast(at::ScalarType to_type, const Tensor& arg, DeviceType device_
if (is_eligible(arg, device_type) && (arg.scalar_type() != to_type)) {
// Heuristic: Do what Apex does, and cache lower_precision_fp casts of fp32 model weights (leaves).
// See cached_casts declaration above for detailed strategy.
//
// We maintain separate caches for gradient-enabled and gradient-disabled modes
// (see get_cached_casts() above). This ensures correctness when mixing torch.no_grad()
// with torch.autocast(), while maintaining optimal performance for both training and inference.
// This fixes issue #158232 without any performance regression.
bool can_try_cache = (to_type == get_lower_precision_fp_from_device_type(device_type) &&
arg.scalar_type() == at::kFloat && arg.requires_grad() &&
arg.is_leaf() && !arg.is_view() && cache_enabled &&

View File

@ -229,10 +229,10 @@ private:
}
static const uint32_t kPhilox10A = 0x9E3779B9;
static const uint32_t kPhilox10B = 0xBB67AE85;
static const uint32_t kPhiloxSA = 0xD2511F53;
static const uint32_t kPhiloxSB = 0xCD9E8D57;
static constexpr uint32_t kPhilox10A = 0x9E3779B9;
static constexpr uint32_t kPhilox10B = 0xBB67AE85;
static constexpr uint32_t kPhiloxSA = 0xD2511F53;
static constexpr uint32_t kPhiloxSB = 0xCD9E8D57;
};
typedef philox_engine Philox4_32;

View File

@ -16,6 +16,8 @@
#include <c10/util/irange.h>
#include <c10/core/ScalarType.h>
#include <ATen/cuda/detail/BLASConstants.h>
#ifdef USE_ROCM
#include <c10/cuda/CUDAStream.h>
#include <hipblaslt/hipblaslt-ext.hpp>
@ -1954,13 +1956,15 @@ void scaled_gemm(
const void *result_scale_ptr,
int64_t result_ld,
ScalarType result_dtype,
bool use_fast_accum) {
bool use_fast_accum,
const std::optional<Tensor>& alpha) {
// Note: see `cublasCommonArgs` for various non-intuitive manupulations
// of input arguments to this function.
const auto computeType = CUBLAS_COMPUTE_32F;
const auto scaleType = CUDA_R_32F;
const float alpha_val = 1.0;
const float beta_val = 0.0;
// Note: alpha_val may change later depending on user-passed argument
float alpha_val = 1.0;
float beta_val = 0.0;
CuBlasLtMatmulDescriptor computeDesc(computeType, scaleType);
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSA, _cublasOpFromChar(transa));
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSB, _cublasOpFromChar(transb));
@ -2031,6 +2035,33 @@ void scaled_gemm(
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_EPILOGUE, CUBLASLT_EPILOGUE_BIAS);
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE, ScalarTypeToCudaDataType(bias_dtype));
}
// Handle user-passed alpha
float *alpha_ptr = &alpha_val;
float *beta_ptr = &beta_val;
if (alpha.has_value()) {
auto& a = alpha.value();
// if device-tensor
if (a.is_cuda()) {
// NOTE: there are lifetime requirements on device-side pointers for alpha/beta -- the value must be
// valid & correct until the cublas call finishes (not is scheduled like host-side values). Thus
// we need to use allocations for alpha/beta that have some guarantees on lifetime - a statically
// managed 4B buffer for alpha that we'll copy the passed alpha value into, and constant memory
// for beta respectively.
float *user_alpha_ptr = at::cuda::detail::get_user_alpha_ptr();
at::Tensor user_alpha = at::from_blob(user_alpha_ptr, {1}, TensorOptions().device(kCUDA).dtype(kFloat));
user_alpha.copy_(a);
// Tell cublasLt we're using device-side pointers for alpha/beta
auto pointer_mode = CUBLASLT_POINTER_MODE_DEVICE;
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_POINTER_MODE, pointer_mode);
alpha_ptr = user_alpha.data_ptr<float>();
beta_ptr = at::cuda::detail::get_cublas_device_zero();
} else {
alpha_val = a.item<float>();
}
}
// For other data types, use the get_scale_mode function based on scaling type
// The SCALE_MODE attrs only exist in cuBLAS 12.8+/ROCm 7.0 or in recent hipblaslt,
// but we must invoke get_scale_mode anyways to trigger the version checks.
@ -2048,6 +2079,7 @@ void scaled_gemm(
cublasLtMatmulHeuristicResult_t heuristicResult = {};
int returnedResult = 0;
cublasLtHandle_t ltHandle = at::cuda::getCurrentCUDABlasLtHandle();
TORCH_CUDABLAS_CHECK(cublasLtMatmulAlgoGetHeuristic(
ltHandle,
computeDesc.descriptor(),
@ -2088,10 +2120,10 @@ void scaled_gemm(
auto is_valid_status = hipblaslt_ext::matmulIsAlgoSupported(
ltHandle,
computeDesc.descriptor(),
&alpha_val,
alpha_ptr,
Adesc.descriptor(),
Bdesc.descriptor(),
&beta_val,
beta_ptr,
Cdesc.descriptor(),
Ddesc.descriptor(),
all_algos[i].algo,
@ -2110,17 +2142,14 @@ void scaled_gemm(
cublasStatus_t cublasStatus = cublasLtMatmul(
ltHandle,
computeDesc.descriptor(),
&alpha_val,
alpha_ptr,
mat1_ptr,
Adesc.descriptor(),
mat2_ptr,
Bdesc.descriptor(),
&beta_val,
#ifdef USE_ROCM
beta_ptr,
// NOTE: always use result_ptr here, because cuBLASLt w/device beta=0 can't handle nullptr either
result_ptr, // unused, since beta_val is 0, but hipblaslt can't handle nullptr
#else
nullptr,
#endif // ifdef USE_ROCM
Cdesc.descriptor(),
result_ptr,
Ddesc.descriptor(),

View File

@ -161,7 +161,8 @@ void scaled_gemm(
const void* result_scale_ptr,
int64_t result_ld,
ScalarType result_dtype,
bool use_fast_accum);
bool use_fast_accum,
const std::optional<Tensor>& alpha);
#define CUDABLAS_BGEMM_ARGTYPES(Dtype) CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(Dtype, Dtype)

View File

@ -325,9 +325,9 @@ uint64_t CUDAGeneratorImpl::seed() {
*/
c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const {
// The RNG state comprises the seed, and an offset used for Philox.
static const size_t seed_size = sizeof(uint64_t);
static const size_t offset_size = sizeof(int64_t);
static const size_t total_size = seed_size + offset_size;
constexpr size_t seed_size = sizeof(uint64_t);
constexpr size_t offset_size = sizeof(int64_t);
constexpr size_t total_size = seed_size + offset_size;
auto state_tensor = at::detail::empty_cpu({(int64_t)total_size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
auto rng_state = state_tensor.data_ptr<uint8_t>();
@ -346,9 +346,9 @@ c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const {
* and size of the internal state.
*/
void CUDAGeneratorImpl::set_state(const c10::TensorImpl& new_state) {
static const size_t seed_size = sizeof(uint64_t);
static const size_t offset_size = sizeof(int64_t);
static const size_t total_size = seed_size + offset_size;
constexpr size_t seed_size = sizeof(uint64_t);
constexpr size_t offset_size = sizeof(int64_t);
constexpr size_t total_size = seed_size + offset_size;
detail::check_rng_state(new_state);

View File

@ -177,7 +177,6 @@ inline void segmented_sort_pairs(
}
}
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT, typename NumSelectedIteratorT>
inline void unique_by_key(
KeysInputIteratorT keys_in, ValuesInputIteratorT values_in,
@ -193,7 +192,6 @@ inline void unique_by_key(
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::UniqueByKey,
keys_in, values_in, keys_out_, values_out, num_selected, num_input_items, c10::cuda::getCurrentCUDAStream());
}
#endif
namespace impl {
@ -579,7 +577,6 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
#endif
}
#if CUB_SUPPORTS_SCAN_BY_KEY()
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT>
inline void inclusive_sum_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, int64_t num_items) {
@ -607,7 +604,6 @@ inline void inclusive_scan_by_key(KeysInputIteratorT keys, ValuesInputIteratorT
#endif
}
#endif
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT>
void unique(InputIteratorT input, OutputIteratorT output,

View File

@ -28,22 +28,6 @@
#define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false
#endif
// cub support for UniqueByKey is added to cub 1.16 in:
// https://github.com/NVIDIA/cub/pull/405
#if CUB_VERSION >= 101600
#define CUB_SUPPORTS_UNIQUE_BY_KEY() true
#else
#define CUB_SUPPORTS_UNIQUE_BY_KEY() false
#endif
// cub support for scan by key is added to cub 1.15
// in https://github.com/NVIDIA/cub/pull/376
#if CUB_VERSION >= 101500
#define CUB_SUPPORTS_SCAN_BY_KEY() 1
#else
#define CUB_SUPPORTS_SCAN_BY_KEY() 0
#endif
// cub support for cub::FutureValue is added to cub 1.15 in:
// https://github.com/NVIDIA/cub/pull/305
#if CUB_VERSION >= 101500

View File

@ -0,0 +1,54 @@
#include <ATen/Functions.h>
#include <ATen/Tensor.h>
#include <ATen/cuda/Exceptions.h>
#include <mutex>
namespace at {
namespace cuda {
namespace detail {
__device__ __constant__ float cublas_one_device;
__device__ __constant__ float cublas_zero_device;
float *get_cublas_device_one() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
const float one = 1.f;
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_one_device, &one, sizeof(float)));
});
float *ptr;
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_one_device));
return ptr;
}
float *get_cublas_device_zero() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
const float zero = 0.f;
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_zero_device, &zero, sizeof(float)));
});
float *ptr;
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_zero_device));
return ptr;
}
float *get_user_alpha_ptr() {
static float *alpha_ptr;
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
AT_CUDA_CHECK(cudaMalloc(&alpha_ptr, sizeof(float)));
});
return alpha_ptr;
}
} // namespace detail
} // namespace cuda
} // namespace at

View File

@ -0,0 +1,11 @@
#pragma once
#include <ATen/core/TensorBase.h>
namespace at::cuda::detail {
float *get_cublas_device_one();
float *get_cublas_device_zero();
float *get_user_alpha_ptr();
} // namespace at::cuda::detail

View File

@ -109,7 +109,8 @@ class DefaultScaledGemmOp : public Callable<ScaledGemmParams<T>> {
params->c_scale_ptr,
params->ldc,
params->c_dtype,
params->use_fast_accum);
params->use_fast_accum,
std::nullopt /* alpha */);
return OK;
}
};

View File

@ -160,6 +160,10 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
DispatchKey::CUDA,
DispatchKey::CPU,
DispatchKey::PrivateUse1,
DispatchKey::SparseCPU,
DispatchKey::SparseCUDA,
DispatchKey::SparseCsrCPU,
DispatchKey::SparseCsrCUDA,
});
inline DispatchKeySet getKeysToPropagateToWrapper(const Tensor& tensor, DispatchKeySet to_propagate=kKeysToPropagateToWrapper) {

View File

@ -240,8 +240,8 @@ TORCH_META_FUNC(gelu_backward) (
namespace at::native {
static const double SELU_ALPHA = 1.6732632423543772848170429916717;
static const double SELU_SCALE = 1.0507009873554804934193349852946;
static constexpr double SELU_ALPHA = 1.6732632423543772848170429916717;
static constexpr double SELU_SCALE = 1.0507009873554804934193349852946;
DEFINE_DISPATCH(elu_stub);
DEFINE_DISPATCH(elu_backward_stub);

View File

@ -286,7 +286,7 @@ template void scal_fast_path<scalar_t>(int *n, scalar_t *a, scalar_t *x, int *in
#if AT_BUILD_WITH_BLAS()
template <>
bool scal_use_fast_path<double>(int64_t n, int64_t incx) {
auto intmax = std::numeric_limits<int>::max();
auto constexpr intmax = std::numeric_limits<int>::max();
return n <= intmax && incx <= intmax;
}
@ -315,7 +315,7 @@ bool gemv_use_fast_path<float>(
int64_t incx,
[[maybe_unused]] float beta,
int64_t incy) {
auto intmax = std::numeric_limits<int>::max();
auto constexpr intmax = std::numeric_limits<int>::max();
return (m <= intmax) && (n <= intmax) && (lda <= intmax) &&
(incx > 0) && (incx <= intmax) && (incy > 0) && (incy <= intmax);
}

View File

@ -658,6 +658,7 @@ static void check_shape_forward(const at::Tensor& input,
TORCH_CHECK(!params.is_output_padding_neg(), "negative output_padding is not supported");
TORCH_CHECK(!params.is_stride_nonpos(), "non-positive stride is not supported");
TORCH_CHECK(!params.is_dilation_neg(), "dilation should be greater than zero");
TORCH_CHECK(groups > 0, "expected groups to be greater than 0, but got groups=", groups);
TORCH_CHECK(weight_dim == k,
"Expected ", weight_dim, "-dimensional input for ", weight_dim,

View File

@ -1,5 +1,6 @@
#pragma once
#include <array>
#include <ATen/native/Math.h>
#include <c10/macros/Macros.h>
#include <c10/util/MathConstants.h>
@ -127,7 +128,7 @@ C10_DEVICE scalar_t sample_gamma(scalar_t alpha, BaseSampler<accscalar_t, unifor
template<typename scalar_t>
C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
const static scalar_t kTailValues[] = {
constexpr static scalar_t kTailValues[] = {
0.0810614667953272,
0.0413406959554092,
0.0276779256849983,
@ -139,7 +140,7 @@ C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
0.00925546218271273,
0.00833056343336287
};
if (k <= 9) {
if (k < std::size(kTailValues)) {
return kTailValues[static_cast<size_t>(k)];
}
scalar_t kp1sq = (k + 1) * (k + 1);

View File

@ -581,7 +581,7 @@ scalar_t ratevl(scalar_t x, const scalar_t num[], int64_t M,
template <typename scalar_t>
static scalar_t lanczos_sum_expg_scaled(scalar_t x) {
// lanczos approximation
static const scalar_t lanczos_sum_expg_scaled_num[13] = {
static constexpr scalar_t lanczos_sum_expg_scaled_num[13] = {
0.006061842346248906525783753964555936883222,
0.5098416655656676188125178644804694509993,
19.51992788247617482847860966235652136208,
@ -596,7 +596,7 @@ static scalar_t lanczos_sum_expg_scaled(scalar_t x) {
103794043.1163445451906271053616070238554,
56906521.91347156388090791033559122686859
};
static const scalar_t lanczos_sum_expg_scaled_denom[13] = {
static constexpr scalar_t lanczos_sum_expg_scaled_denom[13] = {
1.,
66.,
1925.,
@ -712,7 +712,7 @@ static scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
template <typename scalar_t>
static scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t x, bool igam) {
// Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
static const scalar_t d[25][25] =
static constexpr scalar_t d[25][25] =
{{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2,
1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4,
3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6,

View File

@ -62,7 +62,7 @@
#include <utility>
#include <vector>
static const int MIOPEN_DIM_MAX = 5;
static constexpr int MIOPEN_DIM_MAX = 5;
namespace at::meta {

View File

@ -77,7 +77,7 @@ inline AdvancedIndex make_info(Tensor self, IOptTensorListRef orig) {
// next broadcast all index tensors together
try {
indices = expand_outplace(indices);
} catch (std::exception& e) {
} catch (std::exception&) {
TORCH_CHECK_INDEX(
false,
"shape mismatch: indexing tensors could not be broadcast together"

View File

@ -1038,7 +1038,7 @@ struct HelperInterpNearest : public HelperInterpBase {
// We keep this structure for BC and consider as deprecated.
// See HelperInterpNearestExact as replacement
static const int interp_size = 1;
static constexpr int interp_size = 1;
static inline void init_indices_weights(
at::ScalarType output_type,
@ -1155,7 +1155,7 @@ struct HelperInterpNearestExact : public HelperInterpNearest {
struct HelperInterpLinear : public HelperInterpBase {
static const int interp_size = 2;
static constexpr int interp_size = 2;
// Compute indices and weights for each interpolated dimension
// indices_weights = {
@ -1275,7 +1275,7 @@ struct HelperInterpLinear : public HelperInterpBase {
struct HelperInterpCubic : public HelperInterpBase {
static const int interp_size = 4;
static constexpr int interp_size = 4;
// Compute indices and weights for each interpolated dimension
// indices_weights = {

View File

@ -1359,7 +1359,8 @@ _scaled_gemm(
const ScalingType scaling_choice_a, const ScalingType scaling_choice_b,
const std::optional<Tensor>& bias,
const bool use_fast_accum,
Tensor& out) {
Tensor& out,
const std::optional<Tensor>& alpha = std::nullopt) {
cublasCommonArgs args(mat1, mat2, out, scale_a, scale_b, std::nullopt, scaling_choice_a, scaling_choice_b);
const auto out_dtype_ = args.result->scalar_type();
TORCH_CHECK(args.transa == 't' && args.transb == 'n', "Only multiplication of row-major and column-major matrices is supported by cuBLASLt");
@ -1410,7 +1411,8 @@ _scaled_gemm(
args.scale_result_ptr,
args.result_ld,
out_dtype_,
use_fast_accum);
use_fast_accum,
alpha);
return out;
}
}
@ -2320,12 +2322,23 @@ _scaled_nvfp4_nvfp4(
const Tensor& scale_b, const SwizzleType swizzle_b,
const std::optional<Tensor>& bias,
const c10::ScalarType out_dtype,
const bool single_scale,
Tensor& out) {
Tensor& out,
const std::optional<Tensor>& global_scale_a = std::nullopt,
const std::optional<Tensor>& global_scale_b = std::nullopt) {
#ifdef USE_ROCM
TORCH_CHECK_NOT_IMPLEMENTED(false, "NVFP4 scaling not supported on ROCM");
#endif
TORCH_CHECK_VALUE(single_scale, "Only single-scaled NVFP4 currently supported");
std::optional<Tensor> alpha = std::nullopt;
// Note: "Or" here means that if only one scale is passed, we check for the other. Otherwise,
// if this is "And" we would silently do nothing in the case where one global scale is
// passed and not the other.
if (global_scale_a.has_value() || global_scale_b.has_value()) {
TORCH_CHECK_VALUE(global_scale_a.has_value(),
"For two-level-scaled NVFP4, global_scale_a must have a value");
TORCH_CHECK_VALUE(global_scale_b.has_value(),
"For two-level-scaled NVFP4, global_scale_b must have a value");
alpha = global_scale_a.value().mul(global_scale_b.value());
}
// Restrictions:
// A, B are FP4, scales are e8m0, A: shape K//32, B: K, N//32
// Scales must be swizzled
@ -2347,7 +2360,7 @@ _scaled_nvfp4_nvfp4(
auto scaling_choice_a = ScalingType::BlockWise1x16;
auto scaling_choice_b = ScalingType::BlockWise1x16;
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out, alpha);
}
@ -2553,9 +2566,10 @@ _scaled_mm_cuda_v2_out(
} else if (gemm_impl == ScaledGemmImplementation::MXFP8_MXFP8) {
return _scaled_mxfp8_mxfp8(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
} else if (gemm_impl == ScaledGemmImplementation::NVFP4_NVFP4) {
TORCH_CHECK_NOT_IMPLEMENTED(false, "Only single-scale NVFP4 currently supported");
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out,
scale_a[1], scale_b[1]);
} else if (gemm_impl == ScaledGemmImplementation::NVFP4_NVFP4_SINGLE_SCALE) {
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, true /* single_scale */, out);
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
} else if (gemm_impl == ScaledGemmImplementation::MXFP4_MXFP4) {
return _scaled_mxfp4_mxfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
} else {

View File

@ -249,7 +249,7 @@ __global__ void max_pool_forward_nhwc(
}
static const int BLOCK_THREADS = 256;
static constexpr int BLOCK_THREADS = 256;
template <typename scalar_t, typename accscalar_t>
#if defined (USE_ROCM)

View File

@ -15,9 +15,7 @@
#include <ATen/native/cuda/block_reduce.cuh>
#include <ATen/native/cuda/thread_constants.h>
#if CUB_SUPPORTS_SCAN_BY_KEY()
#include <thrust/iterator/reverse_iterator.h>
#endif
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
@ -36,9 +34,9 @@ namespace at::native {
namespace {
#if defined(USE_ROCM)
static const int BLOCKDIMY = 16;
static constexpr int BLOCKDIMY = 16;
#else
static const int BLOCKDIMY = 32;
static constexpr int BLOCKDIMY = 32;
#endif
template
@ -240,10 +238,6 @@ __global__ void renorm_kernel(
} // anonymous namespace
#if !CUB_SUPPORTS_SCAN_BY_KEY()
template<typename index_t>
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count);
#endif
Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indices_,
int64_t num_weights, int64_t padding_idx,
@ -306,7 +300,6 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice
if (scale_grad_by_freq) {
count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
#if CUB_SUPPORTS_SCAN_BY_KEY()
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () {
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -333,11 +326,6 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice
num_indices
);
});
#else
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () {
embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count);
});
#endif
}
return embedding_backward_cuda_kernel(grad, orig_indices,

View File

@ -10,9 +10,7 @@
#include <c10/macros/Macros.h>
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
#include <thrust/iterator/counting_iterator.h>
#endif
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
@ -196,18 +194,9 @@ __global__ void compute_num_of_partial_segments(const index_t *partials_per_segm
partials_per_segment_offset[num_of_segments-1];
}
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
__global__ void write_num_of_segments_for_legacy_thrust_path(int64_t *num_of_segments_ptr, int64_t num_of_segments) {
*num_of_segments_ptr = num_of_segments;
}
#endif
} // anon namespace
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
template<typename index_t>
int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets);
#endif
Tensor embedding_backward_cuda_kernel(
const Tensor &grad,
@ -234,20 +223,12 @@ Tensor embedding_backward_cuda_kernel(
auto segment_offsets = at::empty({numel}, orig_indices.options());
auto num_of_segments_tensor = at::empty({}, grad.options().dtype(kLong));
int64_t *num_of_segments_ptr = num_of_segments_tensor.mutable_data_ptr<int64_t>();
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () {
int64_t num_of_segments = embedding_backward_cuda_kernel_unique_by_key<index_t>(sorted_indices, segment_offsets);
write_num_of_segments_for_legacy_thrust_path<<<1, 1, 0, c10::cuda::getCurrentCUDAStream()>>>(num_of_segments_ptr, num_of_segments);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
#else
AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () {
cuda::cub::unique_by_key(
sorted_indices.const_data_ptr<index_t>(), thrust::make_counting_iterator(0),
segment_offsets.mutable_data_ptr<index_t>(),
num_of_segments_ptr, sorted_indices.numel());
});
#endif
int64_t max_segments = std::min<int64_t>(numel, num_weights);

View File

@ -31,16 +31,10 @@
#include <c10/macros/Macros.h>
#if CUB_SUPPORTS_SCAN_BY_KEY()
#include <thrust/iterator/reverse_iterator.h>
#endif
namespace at::native {
#if !CUB_SUPPORTS_SCAN_BY_KEY()
template<typename index_t>
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count);
#endif
namespace {
@ -199,7 +193,6 @@ Tensor embedding_bag_backward_cuda_sum_avg(
if (scale_grad_by_freq) {
count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
#if CUB_SUPPORTS_SCAN_BY_KEY()
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () {
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -226,11 +219,6 @@ Tensor embedding_bag_backward_cuda_sum_avg(
num_indices
);
});
#else
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () {
embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count);
});
#endif
}
return embedding_backward_cuda_kernel(grad, orig_indices, sorted_indices,
count, num_weights, padding_idx, mode == EmbeddingBagMode::MEAN, offset2bag,

View File

@ -82,7 +82,7 @@ __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) {
// lanczos approximation
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const accscalar_t lanczos_sum_expg_scaled_num[13] = {
constexpr accscalar_t lanczos_sum_expg_scaled_num[13] = {
0.006061842346248906525783753964555936883222,
0.5098416655656676188125178644804694509993,
19.51992788247617482847860966235652136208,
@ -97,7 +97,7 @@ __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) {
103794043.1163445451906271053616070238554,
56906521.91347156388090791033559122686859
};
static const accscalar_t lanczos_sum_expg_scaled_denom[13] = {
constexpr accscalar_t lanczos_sum_expg_scaled_denom[13] = {
1.,
66.,
1925.,
@ -126,10 +126,10 @@ __host__ __device__ scalar_t _igam_helper_fac(scalar_t a, scalar_t x) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
accscalar_t ax, fac, res, num, numfac;
static const accscalar_t MAXLOG = std::is_same_v<accscalar_t,double> ?
constexpr accscalar_t MAXLOG = std::is_same_v<accscalar_t,double> ?
7.09782712893383996843E2 : 88.72283905206835;
static const accscalar_t EXP1 = 2.718281828459045;
static const accscalar_t lanczos_g = 6.024680040776729583740234375;
constexpr accscalar_t EXP1 = 2.718281828459045;
constexpr accscalar_t lanczos_g = 6.024680040776729583740234375;
if (::fabs(a - x) > 0.4 * ::fabs(a)) {
ax = a * ::log(x) - x - ::lgamma(a);
@ -158,9 +158,9 @@ __host__ __device__ scalar_t _igam_helper_series(scalar_t a, scalar_t x) {
// Compute igam using DLMF 8.11.4. [igam1]
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
static const int MAXITER = 2000;
constexpr int MAXITER = 2000;
int i;
accscalar_t ans, ax, c, r;
@ -196,8 +196,8 @@ __host__ __device__ scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
accscalar_t fac = 1;
accscalar_t sum = 0;
accscalar_t term, logx;
static const int MAXITER = 2000;
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
constexpr int MAXITER = 2000;
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
for (n = 1; n < MAXITER; n++) {
@ -219,7 +219,7 @@ __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t
// Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const accscalar_t d[25][25] =
constexpr accscalar_t d[25][25] =
{{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2, 1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4, 3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6, 8.296711340953086e-7, -1.7665952736826079e-7, 6.7078535434014986e-9, 1.0261809784240308e-8, -4.3820360184533532e-9, 9.1476995822367902e-10, -2.551419399494625e-11, -5.8307721325504251e-11, 2.4361948020667416e-11, -5.0276692801141756e-12, 1.1004392031956135e-13, 3.3717632624009854e-13, -1.3923887224181621e-13, 2.8534893807047443e-14, -5.1391118342425726e-16, -1.9752288294349443e-15},
{-1.8518518518518519e-3, -3.4722222222222222e-3, 2.6455026455026455e-3, -9.9022633744855967e-4, 2.0576131687242798e-4, -4.0187757201646091e-7, -1.8098550334489978e-5, 7.6491609160811101e-6, -1.6120900894563446e-6, 4.6471278028074343e-9, 1.378633446915721e-7, -5.752545603517705e-8, 1.1951628599778147e-8, -1.7543241719747648e-11, -1.0091543710600413e-9, 4.1627929918425826e-10, -8.5639070264929806e-11, 6.0672151016047586e-14, 7.1624989648114854e-12, -2.9331866437714371e-12, 5.9966963656836887e-13, -2.1671786527323314e-16, -4.9783399723692616e-14, 2.0291628823713425e-14, -4.13125571381061e-15},
{4.1335978835978836e-3, -2.6813271604938272e-3, 7.7160493827160494e-4, 2.0093878600823045e-6, -1.0736653226365161e-4, 5.2923448829120125e-5, -1.2760635188618728e-5, 3.4235787340961381e-8, 1.3721957309062933e-6, -6.298992138380055e-7, 1.4280614206064242e-7, -2.0477098421990866e-10, -1.4092529910867521e-8, 6.228974084922022e-9, -1.3670488396617113e-9, 9.4283561590146782e-13, 1.2872252400089318e-10, -5.5645956134363321e-11, 1.1975935546366981e-11, -4.1689782251838635e-15, -1.0940640427884594e-12, 4.6622399463901357e-13, -9.905105763906906e-14, 1.8931876768373515e-17, 8.8592218725911273e-15},
@ -248,7 +248,7 @@ __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t
int k, n, sgn;
int maxpow = 0;
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
accscalar_t lambda = x / a;
accscalar_t sigma = (x - a) / a;
@ -314,12 +314,12 @@ __host__ __device__ scalar_t _igamc_helper_continued_fraction(scalar_t a, scalar
int i;
accscalar_t ans, ax, c, yc, r, t, y, z;
accscalar_t pk, pkm1, pkm2, qk, qkm1, qkm2;
static const int MAXITER = 2000;
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
constexpr int MAXITER = 2000;
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
static const accscalar_t BIG = std::is_same_v<accscalar_t,double> ?
constexpr accscalar_t BIG = std::is_same_v<accscalar_t,double> ?
4.503599627370496e15 : 16777216.;
static const accscalar_t BIGINV = std::is_same_v<accscalar_t,double> ?
constexpr accscalar_t BIGINV = std::is_same_v<accscalar_t,double> ?
2.22044604925031308085e-16 : 5.9604644775390625E-8;
ax = _igam_helper_fac(a, x);
@ -385,10 +385,10 @@ __noinline__ __host__ __device__ scalar_t calc_igammac(scalar_t a, scalar_t x) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
accscalar_t absxma_a;
static const accscalar_t SMALL = 20.0;
static const accscalar_t LARGE = 200.0;
static const accscalar_t SMALLRATIO = 0.3;
static const accscalar_t LARGERATIO = 4.5;
constexpr accscalar_t SMALL = 20.0;
constexpr accscalar_t LARGE = 200.0;
constexpr accscalar_t SMALLRATIO = 0.3;
constexpr accscalar_t LARGERATIO = 4.5;
if ((x < 0) || (a < 0)) {
// out of defined-region of the function
@ -467,10 +467,10 @@ __noinline__ __host__ __device__ scalar_t calc_igamma(scalar_t a, scalar_t x) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
accscalar_t absxma_a;
static const accscalar_t SMALL = 20.0;
static const accscalar_t LARGE = 200.0;
static const accscalar_t SMALLRATIO = 0.3;
static const accscalar_t LARGERATIO = 4.5;
constexpr accscalar_t SMALL = 20.0;
constexpr accscalar_t LARGE = 200.0;
constexpr accscalar_t SMALLRATIO = 0.3;
constexpr accscalar_t LARGERATIO = 4.5;
// boundary values following SciPy
if ((x < 0) || (a < 0)) {

View File

@ -1,90 +0,0 @@
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/native/cuda/SortingCommon.cuh>
#include <ATen/cuda/cub_definitions.cuh>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty_like.h>
#endif
#include <ATen/cuda/ThrustAllocator.h>
#include <thrust/device_ptr.h>
#include <thrust/execution_policy.h>
#include <thrust/sort.h>
#include <thrust/unique.h>
#include <thrust/device_ptr.h>
#include <thrust/iterator/constant_iterator.h>
namespace at::native {
#if !CUB_SUPPORTS_SCAN_BY_KEY()
template<typename index_t>
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count) {
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
at::cuda::ThrustAllocator allocator;
auto policy = thrust::cuda::par(allocator).on(stream);
auto num_indices = count.numel();
// Compute an increasing sequence per unique item in sortedIndices:
// sorted: 2 5 5 5 7 7 8 9 9
// count: 1 1 2 3 1 2 1 1 2
auto sorted_data = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>());
auto count_data = thrust::device_ptr<index_t>(count.mutable_data_ptr<index_t>());
thrust::inclusive_scan_by_key(
policy,
sorted_data,
sorted_data + num_indices,
thrust::make_constant_iterator(1),
count_data
);
// Take the maximum of each count per unique key in reverse:
// sorted: 2 5 5 5 7 7 8 9 9
// count: 1 3 3 3 2 2 1 2 2
thrust::inclusive_scan_by_key(
policy,
thrust::make_reverse_iterator(sorted_data + num_indices),
thrust::make_reverse_iterator(sorted_data),
thrust::make_reverse_iterator(count_data + num_indices),
thrust::make_reverse_iterator(count_data + num_indices),
thrust::equal_to<index_t>(),
thrust::maximum<index_t>()
);
}
template
void embedding_dense_backward_cuda_scan<int>(Tensor &sorted_indices, Tensor &count);
template
void embedding_dense_backward_cuda_scan<int64_t>(Tensor &sorted_indices, Tensor &count);
#endif
template<typename index_t>
int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets) {
auto stream = at::cuda::getCurrentCUDAStream();
at::cuda::ThrustAllocator allocator;
auto policy = thrust::cuda::par(allocator).on(stream);
const ptrdiff_t numel = sorted_indices.numel();
auto sorted_indices_dev = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>());
auto dummy = at::empty_like(sorted_indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto dummy_dev = thrust::device_ptr<index_t>(dummy.mutable_data_ptr<index_t>());
auto ends = thrust::unique_by_key_copy(
policy,
sorted_indices_dev,
sorted_indices_dev + numel,
thrust::make_counting_iterator(0),
dummy_dev,
thrust::device_ptr<index_t>(segment_offsets.mutable_data_ptr<index_t>()));
return thrust::get<0>(ends) - dummy_dev;
}
template
int64_t embedding_backward_cuda_kernel_unique_by_key<int>(const Tensor &sorted_indices, Tensor &segment_offsets);
template
int64_t embedding_backward_cuda_kernel_unique_by_key<int64_t>(const Tensor &sorted_indices, Tensor &segment_offsets);
} // namespace at::native

View File

@ -231,7 +231,7 @@ const auto lcm_string = jiterator_stringify(
const auto digamma_string = jiterator_stringify(
template <typename T>
T digamma(T x) {
static const double PI_f64 = 3.14159265358979323846;
static constexpr double PI_f64 = 3.14159265358979323846;
// Short-circuits if x is +/- 0 and returns -/+ ∞ per the C++ standard
if (x == 0) {
@ -3072,9 +3072,9 @@ template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_digamma(scalar_t in) {
// [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const double PI_f64 = 3.14159265358979323846;
const accscalar_t PSI_10 = 2.25175258906672110764;
const accscalar_t A[] = {
static constexpr double PI_f64 = 3.14159265358979323846;
constexpr accscalar_t PSI_10 = 2.25175258906672110764;
constexpr accscalar_t A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,

View File

@ -1097,11 +1097,7 @@ ReduceConfig setReduceConfig(const TensorIterator& iter){
// threads with different threadIdx.x are independent and will produce results for different outputs.
// In such case, values in each loaded vector always correspond to different outputs.
if (fastest_moving_stride == sizeof(scalar_t)) {
#ifdef USE_ROCM
if (reduction_on_fastest_striding_dimension && dim0 >= 128 && iter.num_reduce_dims() == 1) {
#else
if (reduction_on_fastest_striding_dimension && dim0 > 128 && iter.num_reduce_dims() == 1 && vt0 >= input_vec_size) {
#endif
// Case 1: "vectorize along input"
// Note that if vt0 < ReduceConfig::vec_size, then this means the register pressure could be high, in such case,
// we should avoid vectorization.

View File

@ -39,9 +39,14 @@ static void std_var_kernel_cuda(TensorIterator& iter, double correction, bool ta
template <typename scalar_t, typename acc_t=scalar_t, typename out_t=scalar_t>
void mean_kernel_impl(TensorIterator& iter) {
// returns acc_t for all non-complex dtypes and returns T for c10::complex<T>
constexpr bool is_16_bits = sizeof(scalar_t) == 2;
using factor_t = typename c10::scalar_value_type<acc_t>::type;
factor_t factor = static_cast<factor_t>(iter.num_output_elements()) / iter.numel();
gpu_reduce_kernel<scalar_t, out_t>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
if constexpr (is_16_bits) {
gpu_reduce_kernel<scalar_t, out_t, /*vt0=*/4, /*input_vec_size=*/8>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
} else {
gpu_reduce_kernel<scalar_t, out_t>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
}
}
static void mean_kernel_cuda(TensorIterator& iter) {

View File

@ -13,24 +13,19 @@ namespace at::native {
template <typename scalar_t, typename acc_t = scalar_t, typename out_t = scalar_t>
struct sum_functor {
void operator()(TensorIterator& iter) {
#ifdef USE_ROCM
// Half and BFloat16 can be packed in groups of up to 8 elements and
// can use *_DWORDX4 instructions to achieve that.
const bool is_16_bits =
( (std::is_same<at::Half, scalar_t>::value) ||
(std::is_same<at::BFloat16, scalar_t>::value) );
if (is_16_bits) {
const auto sum_combine = [] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a + b;
};
constexpr bool is_16_bits = sizeof(scalar_t) == 2;
if constexpr (is_16_bits) {
gpu_reduce_kernel<scalar_t, out_t, /*vt0=*/4, /*input_vec_size=*/8>(
iter, func_wrapper<out_t>([] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a + b;
}));
return;
iter, func_wrapper<out_t>(sum_combine)
);
} else {
gpu_reduce_kernel<scalar_t, out_t>(
iter, func_wrapper<out_t>(sum_combine)
);
}
#endif
gpu_reduce_kernel<scalar_t, out_t>(
iter, func_wrapper<out_t>([] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a + b;
}));
}
};

View File

@ -19,7 +19,6 @@
namespace at::native {
// TODO: remove this when CUDA <11.6 is no longer supported
void topk_out_with_sort(
const Tensor& self,
int64_t k, int64_t dim, bool largest,
@ -31,21 +30,12 @@ void topk_out_with_sort(
indices.copy_(sorted_indices.narrow(dim, 0, k));
}
// TODO: remove this when CUDA <11.6 is no longer supported
bool disable_sort_for_topk();
bool should_use_sort(const Tensor& self, int64_t dim) {
#if defined(USE_ROCM)
if (self.dtype() == kBool) return false; // Bool sort not supported in ROCm: https://github.com/pytorch/pytorch/issues/139972
return (self.numel() >= 10000 && self.numel() == self.size(dim)); // based on the experiments in https://github.com/pytorch/pytorch/pull/146387
#else
if (disable_sort_for_topk()) return false;
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/68632
if (self.dim() == 0) return false;
if (self.dtype() == kBool) return false; // Bool is not support by topk
int64_t slice_size = self.size(dim);
if (slice_size == 0) return false;
int64_t num_slices = self.numel() / slice_size;
return num_slices <= 10 && slice_size >= 100000;
return false;
#endif
}

View File

@ -21,11 +21,6 @@ using namespace at::native;
namespace at::native {
// TODO: remove this when CUDA <11.6 is no longer supported
bool disable_sort_for_topk() {
return CUB_SUPPORTS_SCAN_BY_KEY();
}
namespace sbtopk { // single_block_topk
template <typename T>
@ -418,10 +413,6 @@ __global__ void computeBlockwiseWithinKCounts(
}
__syncthreads();
#if !CUB_SUPPORTS_SCAN_BY_KEY()
return;
#endif
Bitwise desired_digit = at::cuda::Bitfield<Bitwise>::getBitfield(desired, current_bit, RADIX_BITS);
// if largest, then only threads that has tidx > desired_digit are active
@ -477,7 +468,6 @@ __global__ void computeBlockwiseWithinKCounts(
}
}
#if CUB_SUPPORTS_SCAN_BY_KEY()
// Assumption: slice_size can not be larger than UINT32_MAX
template <typename Bitwise>
__global__ void computeBlockwiseKthCounts(
@ -609,7 +599,6 @@ __global__ void gatherTopK(at::cuda::detail::TensorInfo<const T, IndexType> inpu
}
}
}
#endif
int get_items_per_thread(uint64_t num_slices, uint64_t slice_size) {
// occupancy of this kernel is limited by registers per threads
@ -687,16 +676,12 @@ void launch(
uint32_t* digit_cum_sum = reinterpret_cast<uint32_t*>(digit_cum_sum_buffer.get());
AT_CUDA_CHECK(cudaMemsetAsync(digit_cum_sum, 0, numInputSlices * RADIX_DIGITS * sizeof(uint32_t), stream));
#if CUB_SUPPORTS_SCAN_BY_KEY()
auto withinKCounts_buffer = allocator.allocate(num_blocks * sizeof(uint32_t));
uint32_t* withinKCounts = reinterpret_cast<uint32_t*>(withinKCounts_buffer.get());
AT_CUDA_CHECK(cudaMemsetAsync(withinKCounts, 0, num_blocks * sizeof(uint32_t), stream));
auto kthCounts_buffer = allocator.allocate(num_blocks * sizeof(uint32_t));
uint32_t* kthCounts = reinterpret_cast<uint32_t*>(kthCounts_buffer.get());
#else
uint32_t* withinKCounts = nullptr;
#endif
Bitwise desiredMask = 0;
dim3 grid;
@ -743,7 +728,6 @@ void launch(
}
desired = desired_in;
#if CUB_SUPPORTS_SCAN_BY_KEY()
computeBlockwiseKthCounts<Bitwise><<<std::min(((int64_t)numInputSlices + 255) / 256, (int64_t)1073741824), 256, 0, stream>>>(
desired, counts, num_blocks, blocks_per_slice, kthCounts);
C10_CUDA_KERNEL_LAUNCH_CHECK();
@ -759,28 +743,6 @@ void launch(
topK, topKWithinSliceStride, indices, indicesWithinSliceStride, items_per_thread,
blocks_per_slice, kthValues, withinKCounts, kthCounts, num_blocks);
C10_CUDA_KERNEL_LAUNCH_CHECK();
#else
// Find topk values based on kth values
{
dim3 grid;
TORCH_INTERNAL_ASSERT(getGridFromTiles(numInputSlices, grid), "Too many slices for topk");
int warp_size = at::cuda::warp_size();
dim3 block(std::min(at::ceil_div((int64_t)inputSliceSize, (int64_t)warp_size) * (int64_t)warp_size, (int64_t)1024));
sbtopk::gatherTopK<T, IndexType, Dim, /* WithKthValues= */true><<<grid, block, 0, stream>>>(
input,
inputSliceSize,
outputSliceSize,
largest,
numInputSlices,
inputWithinSliceStride,
topK,
topKWithinSliceStride,
indices,
indicesWithinSliceStride,
kthValues);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
#endif
}
} // namespace mbtopk
@ -788,7 +750,6 @@ void launch(
bool should_use_multiblock(int64_t num_slices, int64_t slice_size) {
if (num_slices > std::numeric_limits<uint32_t>::max() ||
slice_size > std::numeric_limits<uint32_t>::max()) return false;
#if CUB_SUPPORTS_SCAN_BY_KEY()
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/74267
return (num_slices <= 20 && slice_size >= 20000) ||
(num_slices > 20 && num_slices <= 40 && slice_size >= 10000) ||
@ -797,12 +758,6 @@ bool should_use_multiblock(int64_t num_slices, int64_t slice_size) {
(num_slices >= 200 && num_slices < 800 && slice_size >= 3000) ||
(num_slices >= 800 && num_slices <= 4000 && slice_size >= 800) ||
(num_slices > 4000 && slice_size >= 400);
#else
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/71081
return (num_slices <= 400 && slice_size >= 5000) ||
(num_slices > 400 && num_slices < 4000 && slice_size >= 1000) ||
(num_slices >= 4000 && slice_size >= 300);
#endif
}
void launch_gather_topk_kernel(

View File

@ -277,7 +277,7 @@ struct BilinearFilterFunctor {
return 0;
}
static const int size = 2;
static constexpr int size = 2;
};
// taken from
@ -301,7 +301,7 @@ struct BicubicFilterFunctor {
return 0;
}
static const int size = 4;
static constexpr int size = 4;
};
template <typename accscalar_t>

View File

@ -127,29 +127,6 @@ __global__ void upsample_bilinear2d_nhwc_out_frame(
}
}
#ifdef USE_ROCM
// Helper function to compute output pixel range that can contribute to input pixel
template <typename accscalar_t>
__device__ __forceinline__ void compute_output_range(
int input_pos,
accscalar_t scale,
int output_size,
bool align_corners,
int& min_output,
int& max_output) {
accscalar_t lo, hi;
if (align_corners) {
lo = static_cast<accscalar_t>(input_pos - 1) / scale;
hi = static_cast<accscalar_t>(input_pos + 1) / scale;
} else {
lo = (input_pos - static_cast<accscalar_t>(0.5)) / scale - static_cast<accscalar_t>(0.5);
hi = (input_pos + static_cast<accscalar_t>(1.5)) / scale - static_cast<accscalar_t>(0.5);
}
min_output = max(0, static_cast<int>(ceil(lo)));
max_output = min(output_size - 1, static_cast<int>(floor(hi)));
}
#endif
// Backward (adjoint) operation 1 <- 2 (accumulates)
template <typename scalar_t, typename accscalar_t>
C10_LAUNCH_BOUNDS_1(1024)
@ -164,74 +141,8 @@ __global__ void upsample_bilinear2d_backward_out_frame(
const bool align_corners,
scalar_t* __restrict__ idata,
const scalar_t* __restrict__ odata) {
// In C++, integer multiplication, like in standard arithmetic, is generally commutative.
const size_t i_numel = nc * width1 * height1;
#ifdef USE_ROCM
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < i_numel;
index += blockDim.x * gridDim.x) {
// Decode input pixel coordinates
size_t index_temp = index;
const int w1 = index_temp % width1;
index_temp /= width1;
const int h1 = index_temp % height1;
const size_t nc_idx = index_temp / height1;
accscalar_t grad_sum = 0;
// Find range of output pixels that could interpolate from this input pixel
int h2_min, h2_max, w2_min, w2_max;
compute_output_range<accscalar_t>(h1, rheight, height2, align_corners, h2_min, h2_max);
compute_output_range<accscalar_t>(w1, rwidth, width2, align_corners, w2_min, w2_max);
// Iterate over potential output pixels
for (int h2 = h2_min; h2 <= h2_max; h2++) {
for (int w2 = w2_min; w2 <= w2_max; w2++) {
// Compute source coordinates for this output pixel
const accscalar_t h1r = area_pixel_compute_source_index<accscalar_t>(
rheight, h2, align_corners, /*cubic=*/false);
const int h1_base = (int)h1r;
const int h1p = (h1_base < height1 - 1) ? 1 : 0;
const accscalar_t h1lambda = h1r - h1_base;
const accscalar_t h0lambda = static_cast<accscalar_t>(1) - h1lambda;
const accscalar_t w1r = area_pixel_compute_source_index<accscalar_t>(
rwidth, w2, align_corners, /*cubic=*/false);
const int w1_base = (int)w1r;
const int w1p = (w1_base < width1 - 1) ? 1 : 0;
const accscalar_t w1lambda = w1r - w1_base;
const accscalar_t w0lambda = static_cast<accscalar_t>(1) - w1lambda;
// Check if our input pixel participates in this interpolation and accumulate all weights
// At boundaries, h1p=0 or w1p=0 causes some sampling positions to collapse
// to the same pixel, so we need to accumulate weights from all matching positions
accscalar_t weight = 0;
// Check all four interpolation positions and accumulate weights
if (h1 == h1_base && w1 == w1_base) {
weight += h0lambda * w0lambda; // top-left
}
if (h1 == h1_base && w1 == w1_base + w1p) {
weight += h0lambda * w1lambda; // top-right (may be same as top-left if w1p=0)
}
if (h1 == h1_base + h1p && w1 == w1_base) {
weight += h1lambda * w0lambda; // bottom-left (may be same as top-left if h1p=0)
}
if (h1 == h1_base + h1p && w1 == w1_base + w1p) {
weight += h1lambda * w1lambda; // bottom-right (may collapse to other positions)
}
if (weight > 0) {
const size_t output_idx = nc_idx * height2 * width2 + h2 * width2 + w2;
grad_sum += weight * static_cast<accscalar_t>(odata[output_idx]);
}
}
}
// Write accumulated gradient (no atomics needed)
idata[index] = static_cast<scalar_t>(grad_sum);
}
#else
const size_t o_numel = nc * width2 * height2;
const size_t i_numel = nc * width1 * height1;
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < o_numel;
index += blockDim.x * gridDim.x) {
size_t index_temp = index;
@ -280,7 +191,6 @@ __global__ void upsample_bilinear2d_backward_out_frame(
static_cast<scalar_t>(h1lambda * w1lambda * d2val),
true);
}
#endif
}
template <typename scalar_t, typename accscalar_t>
@ -477,6 +387,7 @@ static void upsample_bilinear2d_backward_out_cuda_template(
// threads are not covering the whole input tensor.
grad_input.zero_();
const size_t num_kernels = nbatch * channels * output_height * output_width;
const int num_threads = std::min(
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, 1024);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -486,12 +397,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
return;
}
#ifdef USE_ROCM
constexpr bool use_input = true;
#else
constexpr bool use_input = false;
#endif
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half, at::ScalarType::BFloat16,
grad_output_.scalar_type(), "upsample_bilinear2d_backward_out_frame", [&] {
@ -509,8 +414,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
input_width, output_width, align_corners, scales_w);
const size_t num_kernels = nbatch * channels * output_height * output_width;
upsample_bilinear2d_backward_nhwc_out_frame<scalar_t, accscalar_t>
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)), num_threads, 0, stream>>>(
input_height,
@ -541,8 +444,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
input_width, output_width, align_corners, scales_w);
const size_t num_kernels = nbatch * channels * (use_input ? input_height * input_width : output_height * output_width);
upsample_bilinear2d_backward_out_frame<scalar_t, accscalar_t>
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)),
num_threads,

View File

@ -141,7 +141,11 @@ WelfordDataLN cuWelfordOnlineSum(
if constexpr (!rms_norm){
U delta = val - curr_sum.mean;
U new_count = curr_sum.count + 1.f;
#if defined(USE_ROCM) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
U new_mean = curr_sum.mean + delta * __builtin_amdgcn_rcpf(new_count);
#else
U new_mean = curr_sum.mean + delta * (1.f/new_count); //proper division is slow, this is less accurate but noticeably faster
#endif
return {new_mean, curr_sum.sigma2 + delta * (val - new_mean), new_count};
} else{
return {0.f, curr_sum.sigma2 + val * val, 0};
@ -159,7 +163,11 @@ WelfordDataLN cuWelfordCombine(
U count = dataA.count + dataB.count;
U mean, sigma2;
if (count > decltype(dataB.count){0}) {
#if defined(USE_ROCM) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
auto coef = __builtin_amdgcn_rcpf(count);
#else
auto coef = 1.f/count; //NB we don't use --use_fast_math, but this is emulation, 1./count goes to intrinsic, `* coef` is multiplication, instead of slow fp division
#endif
auto nA = dataA.count * coef;
auto nB = dataB.count * coef;
mean = nA*dataA.mean + nB*dataB.mean;

View File

@ -487,9 +487,7 @@ std::unique_ptr<fe::graph::Graph> build_graph(
auto scaled_dot_product_flash_attention_options =
fe::graph::SDPA_attributes()
.set_name("CUDNN_SDPA")
.set_is_inference(return_softmaxstats == false)
// TODO(eqy): switch to this API once cuDNN FE is upgraded
// .set_generate_stats(return_softmaxstats)
.set_generate_stats(return_softmaxstats)
.set_causal_mask(is_causal)
.set_attn_scale(attn_scale);
if (use_ragged_in_dense(q, k, v, o, attn_bias.has_value())) {
@ -707,9 +705,7 @@ std::unique_ptr<fe::graph::Graph> build_graph_nestedtensor(
auto scaled_dot_product_flash_attention_options =
fe::graph::SDPA_attributes()
.set_name("CUDNN_SDPA_NESTEDTENSOR")
.set_is_inference(return_softmaxstats == false)
// TODO(eqy): switch to this API once cuDNN FE is upgraded
// .set_generate_stats(return_softmaxstats)
.set_generate_stats(return_softmaxstats)
.set_causal_mask(is_causal)
.set_attn_scale(attn_scale)
.set_seq_len_q(SEQ_LEN_Q_)

View File

@ -416,7 +416,7 @@ static inline bool checksize(const Tensor& mat1, const Tensor& mat2){
// else if dim = 3, mat1's size = (b * m * n), mat2's size = (b * n * k)
// else called from aten::mv, mat1.size = (m * n), mat2.size = (n)
// only m * n * b * k(if exist) are large enough we can get benefit from mkldnn optimized gemm kernel
static const int64_t mkldnn_gemm_min_size = 16 * 16 * 16;
constexpr int64_t mkldnn_gemm_min_size = 16 * 16 * 16;
if (mat1.dim() == 1 && mat2.dim() == 1) {
// aten::dot
return mat1.size(0) > mkldnn_gemm_min_size;

View File

@ -1,16 +1,16 @@
#pragma once
#include <c10/metal/common.h>
template <unsigned N = c10::metal::max_ndim, typename idx_type_t = int64_t>
struct CatLargeSharedParams {
template <typename idx_type_t = int64_t, unsigned N = c10::metal::max_ndim>
struct CatSharedParams {
int32_t ndim;
int32_t cat_dim;
::c10::metal::array<idx_type_t, N> output_strides;
::c10::metal::array<idx_type_t, N> output_sizes;
};
template <unsigned N = c10::metal::max_ndim, typename idx_type_t = int64_t>
struct CatLargeInputParams {
template <typename idx_type_t = int64_t, unsigned N = c10::metal::max_ndim>
struct CatInputParams {
idx_type_t cat_dim_offset;
idx_type_t input_element_offset;
::c10::metal::array<idx_type_t, N> input_strides;

View File

@ -6,26 +6,25 @@
using namespace metal;
using namespace c10::metal;
template <typename T_in, typename T_out>
kernel void cat_large(
template <typename I, typename T_in, typename T_out>
kernel void cat(
constant T_in* input [[buffer(0)]],
device T_out* output [[buffer(1)]],
constant CatLargeSharedParams<>& shared_params [[buffer(2)]],
constant CatLargeInputParams<>& input_params [[buffer(3)]],
constant CatSharedParams<I>& shared_params [[buffer(2)]],
constant CatInputParams<I>& input_params [[buffer(3)]],
uint tid [[thread_position_in_grid]]) {
auto ndim = shared_params.ndim;
auto cat_dim = shared_params.cat_dim;
constant auto& output_strides = shared_params.output_strides;
constant auto& output_sizes = shared_params.output_sizes;
auto cat_dim_offset = input_params.cat_dim_offset;
auto input_element_offset = input_params.input_element_offset;
constant auto& input_strides = input_params.input_strides;
constant auto& input_sizes = input_params.input_sizes;
auto input_element_idx = static_cast<int64_t>(tid) + input_element_offset;
int64_t input_offset = 0;
int64_t output_offset = 0;
auto input_element_idx = static_cast<I>(tid) + input_element_offset;
I input_offset = 0;
I output_offset = 0;
for (auto dim = ndim - 1; dim >= 0; dim--) {
auto dim_size = input_sizes[dim];
@ -42,41 +41,45 @@ kernel void cat_large(
output[output_offset] = static_cast<T_out>(input[input_offset]);
}
#define REGISTER_CAT_LARGE_OP(T_in, T_out) \
template [[host_name("cat_large_" #T_in "_" #T_out)]] \
kernel void cat_large<T_in, T_out>( \
constant T_in * input [[buffer(0)]], \
device T_out * output [[buffer(1)]], \
constant CatLargeSharedParams<> & shared_params [[buffer(2)]], \
constant CatLargeInputParams<> & input_params [[buffer(3)]], \
#define REGISTER_CAT_OP(I, T_in, T_out) \
template [[host_name("cat_" #I "_" #T_in "_" #T_out)]] \
kernel void cat<I, T_in, T_out>( \
constant T_in * input [[buffer(0)]], \
device T_out * output [[buffer(1)]], \
constant CatSharedParams<I> & shared_params [[buffer(2)]], \
constant CatInputParams<I> & input_params [[buffer(3)]], \
uint tid [[thread_position_in_grid]]);
#define REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(T_out) \
REGISTER_CAT_LARGE_OP(float, T_out); \
REGISTER_CAT_LARGE_OP(half, T_out); \
REGISTER_CAT_LARGE_OP(bfloat, T_out); \
REGISTER_CAT_LARGE_OP(int, T_out); \
REGISTER_CAT_LARGE_OP(uint, T_out); \
REGISTER_CAT_LARGE_OP(long, T_out); \
REGISTER_CAT_LARGE_OP(ulong, T_out); \
REGISTER_CAT_LARGE_OP(short, T_out); \
REGISTER_CAT_LARGE_OP(ushort, T_out); \
REGISTER_CAT_LARGE_OP(char, T_out); \
REGISTER_CAT_LARGE_OP(uchar, T_out); \
REGISTER_CAT_LARGE_OP(bool, T_out);
#define REGISTER_CAT_OP_ALL_INPUT_TYPES(I, T_out) \
REGISTER_CAT_OP(I, float, T_out); \
REGISTER_CAT_OP(I, half, T_out); \
REGISTER_CAT_OP(I, bfloat, T_out); \
REGISTER_CAT_OP(I, int, T_out); \
REGISTER_CAT_OP(I, uint, T_out); \
REGISTER_CAT_OP(I, long, T_out); \
REGISTER_CAT_OP(I, ulong, T_out); \
REGISTER_CAT_OP(I, short, T_out); \
REGISTER_CAT_OP(I, ushort, T_out); \
REGISTER_CAT_OP(I, char, T_out); \
REGISTER_CAT_OP(I, uchar, T_out); \
REGISTER_CAT_OP(I, bool, T_out);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(float);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(half);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(bfloat);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(int);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(uint);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(long);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(ulong);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(short);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(ushort);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(char);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(uchar);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(bool);
#define REGISTER_CAT_FOR_INDEX_TYPE(I) \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, float); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, half); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, bfloat); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, int); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, uint); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, long); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, ulong); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, short); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, ushort); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, char); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, uchar); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, bool); \
\
REGISTER_CAT_OP(I, float2, float2); \
REGISTER_CAT_OP(I, half2, half2);
REGISTER_CAT_LARGE_OP(float2, float2);
REGISTER_CAT_LARGE_OP(half2, half2);
REGISTER_CAT_FOR_INDEX_TYPE(int64_t);
REGISTER_CAT_FOR_INDEX_TYPE(int32_t);

View File

@ -196,6 +196,28 @@ bool use_metal_mm(const Tensor& self, const Tensor& other, const Tensor& output)
other.size(0) > max_stride_size || other.size(1) > max_stride_size);
}
void map_mps_decomposition_error_code_to_blas(const Tensor& status) {
const auto& status_flat = status.view(-1);
for (const auto i : c10::irange(status_flat.size(0))) {
int code = status_flat[i].item<int>();
switch (code) {
case MPSMatrixDecompositionStatusSuccess:
status_flat[i] = 0;
break;
case MPSMatrixDecompositionStatusNonPositiveDefinite:
case MPSMatrixDecompositionStatusSingular:
status_flat[i] = 2;
break;
case MPSMatrixDecompositionStatusFailure:
status_flat[i] = -1;
break;
default:
TORCH_INTERNAL_ASSERT(false, "Unknown MPSMatrixDecompositionStatus enum value: ", code);
}
}
}
} // anonymous namespace
static void linalg_lu_factor_ex_out_mps_impl(const Tensor& A,
@ -487,6 +509,9 @@ static void linalg_solve_out_mps_impl(const Tensor& A,
"mpsmatrixdecompositionstatus for details.");
}
}
map_mps_decomposition_error_code_to_blas(info);
if (!left) {
// If this was a right solve, transpose the result back
result.copy_(result_t.transpose(-2, -1).contiguous());

View File

@ -3,6 +3,7 @@
#include <ATen/MemoryOverlap.h>
#include <ATen/WrapDimUtils.h>
#include <ATen/mps/MPSProfiler.h>
#include <ATen/native/Pool.h>
#include <ATen/native/TensorShape.h>
#include <ATen/native/TypeProperties.h>
#include <ATen/native/mps/OperationUtils.h>
@ -69,29 +70,40 @@ static void check_shape_except_dim(const Tensor& first, const Tensor& second, in
}
}
// This implementation of cat is used only if one of the inputs or the output is
// too large to use MPSGraph.
template <typename T>
std::string get_type_str();
template <>
std::string get_type_str<int64_t>() {
return "int64_t";
}
template <>
std::string get_type_str<int32_t>() {
return "int32_t";
}
// NOTE: `output` is expected to already have the correct size.
static void cat_out_large_tensor_mps(const ITensorListRef& inputs, int64_t dimension, const Tensor& output) {
CatLargeSharedParams shared_params;
template <typename idx_type_t>
static void cat_out_mps_impl(const ITensorListRef& inputs, int64_t dimension, const Tensor& output) {
CatSharedParams<idx_type_t> shared_params;
shared_params.ndim = output.dim();
shared_params.cat_dim = dimension;
for (const auto dim : c10::irange(output.dim())) {
shared_params.output_strides[dim] = output.stride(dim);
shared_params.output_sizes[dim] = output.size(dim);
shared_params.output_strides[dim] = safe_downcast<idx_type_t, int64_t>(output.stride(dim));
shared_params.output_sizes[dim] = safe_downcast<idx_type_t, int64_t>(output.size(dim));
}
int64_t cat_dim_offset = 0;
idx_type_t cat_dim_offset = 0;
size_t input_idx = 0;
MPSStream* stream = getCurrentMPSStream();
// Launch a separate kernels for each input. This will produce some overhead,
// but that should be relatively minimal since at least one of the inputs is
// very large. In order to launch only one kernel to process all inputs, we
// would have to copy all the input tensor data into a packed buffer, which
// would not be ideal.
// Launch a separate kernels for each input. This will produce some overhead.
// In order to launch only one kernel to process all inputs, we would have to
// copy all the input tensor data into a packed buffer, which would not be
// ideal.
for (const Tensor& input : inputs) {
if (input.numel() == 0) {
continue;
@ -104,21 +116,23 @@ static void cat_out_large_tensor_mps(const ITensorListRef& inputs, int64_t dimen
for (int64_t numel_remaining = input.numel(); numel_remaining > 0; numel_remaining -= max_num_threads) {
auto num_threads = std::min(max_num_threads, numel_remaining);
CatLargeInputParams input_params;
CatInputParams<idx_type_t> input_params;
input_params.cat_dim_offset = cat_dim_offset;
input_params.input_element_offset = input.numel() - numel_remaining;
input_params.cat_dim_offset = safe_downcast<idx_type_t, int64_t>(cat_dim_offset);
input_params.input_element_offset = safe_downcast<idx_type_t, int64_t>(input.numel() - numel_remaining);
for (const auto dim : c10::irange(input.dim())) {
input_params.input_strides[dim] = input.stride(dim);
input_params.input_sizes[dim] = input.size(dim);
input_params.input_strides[dim] = safe_downcast<idx_type_t, int64_t>(input.stride(dim));
input_params.input_sizes[dim] = safe_downcast<idx_type_t, int64_t>(input.size(dim));
}
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
id<MTLComputeCommandEncoder> computeEncoder = stream->commandEncoder();
auto pipeline_state = lib.getPipelineStateForFunc(
fmt::format("cat_large_{}_{}", scalarToMetalTypeString(input), scalarToMetalTypeString(output)));
auto pipeline_state = lib.getPipelineStateForFunc(fmt::format("cat_{}_{}_{}",
get_type_str<idx_type_t>(),
scalarToMetalTypeString(input),
scalarToMetalTypeString(output)));
getMPSProfiler().beginProfileKernel(pipeline_state, "cat", {input});
[computeEncoder setComputePipelineState:pipeline_state];
mtl_setArgs(computeEncoder, input, output, shared_params, input_params);
@ -294,13 +308,6 @@ TORCH_IMPL_FUNC(cat_out_mps)
" and out is on ",
out.device());
// TODO: For better performance by eliminating input tensor gathering and post transpose,
// TODO: it is better to keep the out tensor's memory format.
// TODO: dimension needs to be recomputed as:
// TODO: dim = 0 --> dim = 0; dim = 1 or 2 --> dim = out.dim()- dim; otherwise dim = dim-1
if (needsGather(out)) {
out.unsafeGetTensorImpl()->empty_tensor_restride(MemoryFormat::Contiguous);
}
std::vector<int64_t> size(notSkippedTensor.sizes().vec());
// Compute size of the result in the cat dimension
@ -331,82 +338,9 @@ TORCH_IMPL_FUNC(cat_out_mps)
has_large_tensor |= isTooLargeForMPSGraph(out);
if (has_large_tensor) {
return mps::cat_out_large_tensor_mps(materialized_inputs, dimension, out);
}
struct CachedGraph : public MPSCachedGraph {
CachedGraph(MPSGraph* graph) : MPSCachedGraph(graph) {}
std::vector<MPSGraphTensor*> inputTensors_;
MPSGraphTensor* outputTensor_ = nil;
};
@autoreleasepool {
std::string key = "cat_out_mps:" + std::to_string(dimension) + ":" +
(memory_format == MemoryFormat::ChannelsLast ? "NHWC" : "NCHW");
if (!all_same_dtype) {
key += getTensorsStringKey(input_tensors, true, all_same_sizes_and_stride);
} else {
key += ":" + getMPSTypeString(input_tensors[0].scalar_type(), true) + ":" + std::to_string(inputs.size());
}
for (auto idx : skipped_tensor_indices) {
key += "," + std::to_string(idx);
}
auto cachedGraph = LookUpOrCreateCachedGraph<CachedGraph>(key, [&](auto mpsGraph, auto newCachedGraph) {
auto len_tensor_array = inputs.size() - skipped_tensor_indices.size();
std::vector<MPSGraphTensor*> castInputTensors(len_tensor_array);
newCachedGraph->inputTensors_.reserve(len_tensor_array);
for (const auto idx : c10::irange(len_tensor_array)) {
const Tensor& tensor = input_tensors[idx];
auto scalar_type = getMPSScalarType(tensor.scalar_type());
if (tensor.scalar_type() == kBool) {
scalar_type = MPSDataTypeInt8;
}
newCachedGraph->inputTensors_[idx] = mpsGraphUnrankedPlaceHolder(mpsGraph, scalar_type);
if (tensor.scalar_type() != out_dtype) {
castInputTensors[idx] = [mpsGraph castTensor:newCachedGraph->inputTensors_[idx]
toType:getMPSDataType(out_dtype)
name:@"castInput"];
} else {
castInputTensors[idx] = newCachedGraph->inputTensors_[idx];
}
}
auto inputTensorsArray = [NSArray arrayWithObjects:castInputTensors.data() count:len_tensor_array];
MPSGraphTensor* outputTensor = [mpsGraph concatTensors:inputTensorsArray
dimension:dimension // Maybe convert this from int64_t -> int32
name:nil];
if (getMPSDataType(out_dtype) == MPSDataTypeBool) {
outputTensor = [mpsGraph castTensor:outputTensor toType:MPSDataTypeBool name:@"outputTensor"];
}
newCachedGraph->outputTensor_ = outputTensor;
});
std::vector<Placeholder> inputPlaceholders;
int i = 0;
int t_idx = 0;
for (const Tensor& tensor : materialized_inputs) {
if (std::find(skipped_tensor_indices.begin(), skipped_tensor_indices.end(), i) == skipped_tensor_indices.end()) {
auto scalar_type = getMPSScalarType(tensor.scalar_type());
if (tensor.scalar_type() == kBool) {
scalar_type = MPSDataTypeInt8;
}
inputPlaceholders.emplace_back(cachedGraph->inputTensors_[t_idx], tensor, nullptr, true, scalar_type);
t_idx++;
}
i++;
}
auto outputDataType = getMPSScalarType(out.scalar_type());
Placeholder outputPlaceholder =
Placeholder(cachedGraph->outputTensor_, out, /*mpsShape=*/nil, /*gatherTensorData=*/false, outputDataType);
NSMutableDictionary* feeds = [[NSMutableDictionary new] autorelease];
for (auto& inputPlaceholder : inputPlaceholders) {
feeds[inputPlaceholder.getMPSGraphTensor()] = inputPlaceholder.getMPSGraphTensorData();
}
runMPSGraph(getCurrentMPSStream(), cachedGraph->graph(), feeds, outputPlaceholder);
return mps::cat_out_mps_impl<int64_t>(materialized_inputs, dimension, out);
} else {
return mps::cat_out_mps_impl<int32_t>(materialized_inputs, dimension, out);
}
}

View File

@ -1370,6 +1370,7 @@
dispatch:
SparseCPU: bmm_sparse_cpu
SparseCUDA: bmm_sparse_cuda
SparseMPS: bmm_sparse_mps
NestedTensorCPU: bmm_nested
NestedTensorCUDA: bmm_nested_cuda
tags: core
@ -1385,6 +1386,7 @@
MTIA: bmm_out_mtia
SparseCPU: bmm_out_sparse_cpu
SparseCUDA: bmm_out_sparse_cuda
SparseMPS: bmm_out_sparse_mps
SparseCsrCUDA: bmm_out_sparse_csr_cuda
- func: bmm.dtype(Tensor self, Tensor mat2, ScalarType out_dtype) -> Tensor
@ -4173,7 +4175,7 @@
structured_delegate: mm.out
variants: function, method
dispatch:
SparseCPU, SparseCUDA: _sparse_mm
SparseCPU, SparseCUDA, SparseMPS: _sparse_mm
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: _sparse_csr_mm
tags: core
@ -7112,6 +7114,7 @@
MTIA: addmm_out_mtia
SparseCPU: addmm_out_sparse_dense_cpu
SparseCUDA: addmm_out_sparse_dense_cuda
SparseMPS: addmm_out_sparse_dense_mps
SparseCsrCPU: addmm_out_sparse_compressed_cpu
SparseCsrCUDA: addmm_out_sparse_compressed_cuda
@ -7121,6 +7124,7 @@
dispatch:
SparseCPU: addmm_sparse_dense_cpu
SparseCUDA: addmm_sparse_dense_cuda
SparseMPS: addmm_sparse_dense_mps
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: addmm_sparse_compressed_dense
tags: core

View File

@ -3551,7 +3551,7 @@ void dequantize_tensor_per_tensor_affine_cpu(
#if defined(__ARM_NEON__) || defined(__aarch64__)
const static int PARALLEL_THRESHOLD = 1 << 20;
constexpr static int PARALLEL_THRESHOLD = 1 << 20;
// Generic template defaults to naive quantize implementation
template <typename T>

View File

@ -1388,7 +1388,7 @@ namespace at::native {
TORCH_CHECK(act_scale.numel() == 1 && act_zero_point.numel() <= 1,
"onednn int8 linear: act scale/zp size should be 1/<=1");
static std::optional<at::Tensor> other = std::nullopt;
static const std::string_view binary_post_op = "none";
constexpr std::string_view binary_post_op = "none";
int64_t act_zp = act_zero_point.numel() == 1 ? act_zero_point.item().toLong() : 0;
return linear_int8_with_onednn_weight(
act, act_scale.item().toDouble(), act_zp,

View File

@ -16,8 +16,8 @@ namespace {
#ifdef USE_PYTORCH_QNNPACK
const static float qnnpack_softmax_output_scale = 0x1.0p-8f;
const static int qnnpack_softmax_output_zero_point = 0;
constexpr static float qnnpack_softmax_output_scale = 0x1.0p-8f;
constexpr static int qnnpack_softmax_output_zero_point = 0;
bool is_qnnpack_compatible(
const Tensor& qx,

View File

@ -1,5 +1,6 @@
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/SparseTensorUtils.h>
#include <ATen/ExpandUtils.h>
#include <ATen/native/mps/OperationUtils.h>
#include <ATen/native/sparse/SparseStubs.h>
#include <ATen/native/sparse/SparseBinaryOpIntersectionCommon.h>
@ -18,6 +19,8 @@
#include <ATen/ops/ones_like.h>
#include <ATen/ops/argsort.h>
#include <ATen/ops/result_type.h>
#include <ATen/ops/bmm_native.h>
#include <ATen/ops/addmm_native.h>
#include <ATen/ops/copy_sparse_to_sparse.h>
#include <ATen/ops/mul.h>
#endif
@ -33,6 +36,305 @@ static auto& lib = MetalShaderLibrary::getBundledLibrary();
#include <ATen/native/mps/Mul_metallib.h>
#endif
static Tensor& s_addmm_out_sparse_dense_mps(
Tensor& r,
const Tensor& t,
const SparseTensor& sparse_,
const Tensor& dense,
const Scalar& beta,
const Scalar& alpha) {
TORCH_CHECK(sparse_.sparse_dim() == 2, "addmm: sparse_dim must be 2, got ", sparse_.sparse_dim());
TORCH_CHECK(sparse_.dense_dim() == 0, "addmm: sparse values must be 0-dense-dim, got ", sparse_.dense_dim());
TORCH_CHECK(dense.dim() == 2, "addmm: 'dense' must be 2D, got ", dense.dim());
TORCH_CHECK(t.dim() == 2, "addmm: 't' must be 2D, got ", t.dim());
const int64_t I = sparse_.size(0);
const int64_t J = sparse_.size(1);
const int64_t K = dense.size(1);
TORCH_CHECK(dense.size(0) == J,
"addmm: dense (mat2) dim0 must be ", J, ", got ", dense.size(0));
TORCH_CHECK(t.size(0) == I && t.size(1) == K,
"addmm: 't' shape must be (", I, ", ", K, "), got (", t.size(0), ", ", t.size(1), ")");
r.resize_({I, K});
auto sparse = sparse_.coalesce();
const int64_t nnz = sparse._nnz();
if (nnz == 0 || I == 0 || K == 0) {
at::mul_out(r, t, beta);
return r;
}
const auto v_dtype = sparse._values().scalar_type();
const auto d_dtype = dense.scalar_type();
const auto t_dtype = t.scalar_type();
auto compute_dtype = c10::promoteTypes(c10::promoteTypes(v_dtype, d_dtype), t_dtype);
TORCH_CHECK(canCast(compute_dtype, r.scalar_type()),
"Can't convert computed type ", compute_dtype, " to output ", r.scalar_type());
auto indices2d = sparse._indices().contiguous();
auto values = sparse._values().to(compute_dtype);
auto dense_c = dense.to(compute_dtype).contiguous();
auto t_c = t.to(compute_dtype).contiguous();
const bool out_needs_cast = (r.scalar_type() != compute_dtype) || !r.is_contiguous();
Tensor out_buf = out_needs_cast
? at::empty({I, K}, r.options().dtype(compute_dtype))
: r;
auto out_contig = out_buf.contiguous();
auto device = r.device();
auto stream = getCurrentMPSStream();
const float alpha_f = alpha.to<float>();
const float beta_f = beta.to<float>();
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
const std::string func = "spmm_addmm_coo_" + mps::scalarToMetalTypeString(values);
auto pso = lib.getPipelineStateForFunc(func);
auto enc = stream->commandEncoder();
[enc setComputePipelineState:pso];
const uint32_t tew = pso.threadExecutionWidth;
const uint32_t gridX = static_cast<uint32_t>(K);
const uint32_t gridZ = static_cast<uint32_t>(I);
const uint32_t tgW = std::min<uint32_t>(gridX, tew);
MTLSize grid = MTLSizeMake(gridX, 1, gridZ);
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
mtl_setArgs(enc,
indices2d,
values,
dense_c,
t_c,
out_contig,
std::array<uint32_t, 3>{static_cast<uint32_t>(I),
static_cast<uint32_t>(J),
static_cast<uint32_t>(K)},
std::array<float, 2>{alpha_f, beta_f},
static_cast<uint32_t>(nnz));
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
}
});
if (out_needs_cast) {
r.copy_(out_contig.to(r.scalar_type()));
}
return r;
}
static void build_batch_ptr_mps(
const Tensor& indices_dim0,
int64_t B,
Tensor& batch_ptr
) {
// Builds an array of pointers which point to each batches elements. Example:
// idx_b = [0, 0, 0, 1, 1, 2, 2, 2, 2] // 9 non-zero elements
// └─────┘ └──┘ └─────────┘
// batch 0 batch 1 batch 2
// batch_ptr = [0, 3, 5, 9]
// │ │ │ └─ end of batch 2 (total nnz)
// │ │ └──── batch 2 starts at index 5
// │ └─────── batch 1 starts at index 3
// └────────── batch 0 starts at index 0
TORCH_CHECK(indices_dim0.is_mps() && batch_ptr.is_mps(), "MPS device expected");
auto device = indices_dim0.device();
auto stream = getCurrentMPSStream();
const int64_t nnz = indices_dim0.numel();
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
auto pso = lib.getPipelineStateForFunc("build_batch_ptr_from_sorted_batches");
auto enc = stream->commandEncoder();
[enc setComputePipelineState:pso];
const uint32_t tew = pso.threadExecutionWidth;
const uint32_t Q = static_cast<uint32_t>(B + 1);
const uint32_t tgW = std::min<uint32_t>(Q, tew);
MTLSize grid = MTLSizeMake(Q, 1, 1);
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
mtl_setArgs(enc,
indices_dim0,
batch_ptr,
std::array<uint32_t, 2>{static_cast<uint32_t>(nnz),
static_cast<uint32_t>(B)});
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
}
});
}
static void build_row_ptr_per_batch_mps(
const Tensor& rows,
const Tensor& batch_ptr,
int64_t B,
int64_t I,
Tensor& row_ptr
) {
// Build per-batch CSR-style row pointer arrays from row indices sorted by batch
// Given:
// rows: 1-D array of length nnz with row ids in [0, I), sorted within each batch
// batch_ptr: length B+1, where [batch_ptr[b], batch_ptr[b+1]) is the subrange for batch b
// Produces:
// - row_ptr: shape [B, I+1]
//
// Example (B = 2, I = 4):
// rows = [0, 0, 1, 3, 0, 2, 2] // 7 non-zero elements
// └─── batch 0 ──┘ └─ batch 1 ─┘
// batch_ptr = [0, 4, 7]
// │ │ └─ end of batch 1 (total nnz)
// │ └──── end of batch 0/start of batch 1
// └─────── start of batch 0
//
// per-batch row pointers (I+1 entries each):
// row_ptr[0] = [0, 2, 3, 3, 4]
// row_ptr[1] = [0, 1, 1, 3, 3]
// laid out in memory: [0, 2, 3, 3, 4, 0, 1, 1, 3, 3]
TORCH_CHECK(rows.is_mps() && batch_ptr.is_mps() && row_ptr.is_mps(), "MPS device expected");
auto stream = getCurrentMPSStream();
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
auto pso = lib.getPipelineStateForFunc("build_row_ptr_from_sorted_rows_by_batch");
auto enc = stream->commandEncoder();
[enc setComputePipelineState:pso];
const uint32_t tew = pso.threadExecutionWidth;
const uint32_t Qx = static_cast<uint32_t>(I + 1);
const uint32_t Qy = static_cast<uint32_t>(B);
const uint32_t tgW = std::min<uint32_t>(Qx, tew);
MTLSize grid = MTLSizeMake(Qx, Qy, 1);
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
mtl_setArgs(enc,
rows,
batch_ptr,
row_ptr,
std::array<uint32_t, 2>{static_cast<uint32_t>(I),
static_cast<uint32_t>(B)});
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
}
});
}
Tensor& bmm_out_sparse_mps(const SparseTensor& self_, const Tensor& mat2_, Tensor& result_) {
TORCH_CHECK(result_.is_mps(), "bmm_sparse: expected 'out' to be MPS, got ", result_.device());
TORCH_CHECK(self_.is_mps(), "bmm_sparse: expected 'self' to be MPS, got ", self_.device());
TORCH_CHECK(mat2_.is_mps(), "bmm_sparse: expected 'mat2' to be MPS, got ", mat2_.device());
TORCH_CHECK(self_.dense_dim() == 0, "bmm_sparse: Tensor 'self' must have 0 dense dims, but has ", self_.dense_dim());
TORCH_CHECK(self_.sparse_dim() == 3, "bmm_sparse: Tensor 'self' must have 3 sparse dims, but has ", self_.sparse_dim());
TORCH_CHECK(mat2_.dim() == 3, "bmm_sparse: Tensor 'mat2' must have 3 dims, but has ", mat2_.dim());
TORCH_CHECK(self_.size(0) == mat2_.size(0), "bmm_sparse: 'self.size(0)' and 'mat2.size(0)' must match");
TORCH_CHECK(self_.size(2) == mat2_.size(1), "bmm_sparse: 'self.size(2)' and 'mat2.size(1)' must match");
const int64_t B = self_.size(0);
const int64_t I = self_.size(1);
const int64_t J = self_.size(2);
const int64_t K = mat2_.size(2);
auto self = self_.coalesce();
const int64_t nnz = self._nnz();
if (nnz == 0) {
return result_.zero_();
}
const auto computeDtype = at::kFloat;
auto indices = self._indices();
auto values = self._values();
auto values_c = values.scalar_type() == computeDtype ? values : values.to(computeDtype);
auto mat2_c = mat2_.scalar_type() == computeDtype ? mat2_ : mat2_.to(computeDtype);
auto mat2_contig = mat2_c.contiguous();
auto idx_b = indices.select(0, 0).contiguous();
auto idx_i = indices.select(0, 1).contiguous();
auto idx_j = indices.select(0, 2).contiguous();
// builds an array of pointers of where the batch_idx's pointer starts and ends
// look in function for better explanation
auto batch_ptr = at::empty({B + 1}, at::device(result_.device()).dtype(kLong));
build_batch_ptr_mps(idx_b, B, batch_ptr);
// build row_ptr per batch: for each (b, i) get [start, end) into rows/cols/vals
auto row_ptr = at::empty({B * (I + 1)}, at::device(result_.device()).dtype(kLong));
build_row_ptr_per_batch_mps(idx_i, batch_ptr, B, I, row_ptr);
const bool out_needs_cast = (result_.scalar_type() != computeDtype) || !result_.is_contiguous();
Tensor out_buf = out_needs_cast
? at::empty({B, I, K}, result_.options().dtype(computeDtype))
: result_;
auto out_contig = out_buf.contiguous();
auto stream = getCurrentMPSStream();
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
auto pso = lib.getPipelineStateForFunc("spmm_bmm_coo_rows_grouped_" + mps::scalarToMetalTypeString(values));
auto enc = stream->commandEncoder();
[enc setComputePipelineState:pso];
const uint32_t tew = pso.threadExecutionWidth;
const uint32_t tgW = std::min<uint32_t>((uint32_t)K, tew);
// One threadgroup per (row i, batch b), lanes cover K
MTLSize grid = MTLSizeMake(tgW, (uint32_t)I, (uint32_t)B);
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
mtl_setArgs(enc,
idx_i,
idx_j,
values_c,
mat2_contig,
out_contig,
row_ptr,
std::array<uint32_t, 4>{(uint32_t)B, (uint32_t)I, (uint32_t)J, (uint32_t)K});
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
}
});
if (out_needs_cast) {
result_.copy_(out_contig.to(result_.scalar_type()));
}
return result_;
}
Tensor bmm_sparse_mps(const Tensor& self, const Tensor& mat2) {
Tensor result = at::zeros({self.size(0), self.size(1), mat2.size(2)}, mat2.options());
return bmm_out_sparse_mps(self, mat2, result);
}
Tensor& addmm_out_sparse_dense_mps(
const Tensor& self,
const SparseTensor& mat1,
const Tensor& mat2,
const Scalar& beta,
const Scalar& alpha,
Tensor& result) {
c10::MaybeOwned<Tensor> b_self = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm_out");
return s_addmm_out_sparse_dense_mps(result, *b_self, mat1, mat2, beta, alpha);
}
Tensor addmm_sparse_dense_mps(
const Tensor& self,
const SparseTensor& mat1,
const Tensor& mat2,
const Scalar& beta,
const Scalar& alpha
) {
c10::MaybeOwned<Tensor> b_self = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm_out");
Tensor result = at::empty({0}, self.options());
return s_addmm_out_sparse_dense_mps(result, *b_self, mat1, mat2, beta, alpha);
}
static SparseTensor& mul_out_dense_sparse_mps(
const Tensor& dense,
const Tensor& sparse,

View File

@ -1,10 +1,105 @@
#include <metal_stdlib>
#include <c10/metal/indexing.h>
#include <c10/metal/utils.h>
using namespace c10::metal;
using namespace metal;
inline uint lower_bound_i64(device const long* arr, uint lo, uint hi, long key) {
uint l = lo, r = hi;
while (l < r) {
uint m = (l + r) >> 1;
long v = arr[m];
if (v < key) {
l = m + 1;
} else {
r = m;
}
}
return l;
}
template <typename T> struct MulAccum { using type = float; };
template <> struct MulAccum<float2> { using type = float2; };
inline uint upper_bound_i64(device const long* arr, uint lo, uint hi, long key) {
uint l = lo, r = hi;
while (l < r) {
uint m = (l + r) >> 1;
long v = arr[m];
if (v <= key) {
l = m + 1;
} else {
r = m;
}
}
return l;
}
kernel void build_row_ptr_from_sorted_rows_by_batch(
device const long* rows [[buffer(0)]],
device const long* batch_ptr [[buffer(1)]],
device long* row_ptr [[buffer(2)]],
constant uint2& dims [[buffer(3)]],
uint3 tid [[thread_position_in_grid]])
{
const uint I = dims.x;
const uint B = dims.y;
const uint i = tid.x;
const uint b = tid.y;
if (b >= B || i > I) return;
const uint base = (uint)batch_ptr[b];
const uint lim = (uint)batch_ptr[b + 1];
const ulong out_base = (ulong)b * (ulong)(I + 1);
if (i == I) {
row_ptr[out_base + (ulong)I] = (long)lim;
} else {
const long key = (long)i;
const uint pos = lower_bound_i64(rows, base, lim, key);
row_ptr[out_base + (ulong)i] = (long)pos;
}
}
template <typename T>
kernel void spmm_bmm_coo_rows_grouped(
device const long* rows [[buffer(0)]],
device const long* cols [[buffer(1)]],
device const T* vals [[buffer(2)]],
device const T* dense [[buffer(3)]],
device T* out [[buffer(4)]],
device const long* row_ptr [[buffer(5)]],
constant uint4& dims [[buffer(6)]],
uint3 tid [[thread_position_in_grid]],
uint3 ltid [[thread_position_in_threadgroup]],
uint3 tptg [[threads_per_threadgroup]])
{
const uint B = dims.x;
const uint I = dims.y;
const uint J = dims.z;
const uint K = dims.w;
const uint b = tid.z;
const uint i = tid.y;
const uint lane = ltid.x;
const uint tgW = tptg.x;
const ulong rp_base = (ulong)b * (ulong)(I + 1);
const uint start = (uint)row_ptr[rp_base + (ulong)i];
const uint end = (uint)row_ptr[rp_base + (ulong)i + 1];
for (uint k = lane; k < K; k += tgW) {
auto acc = static_cast<accum_t<T>>(T(0));
for (uint p = start; p < end; ++p) {
const uint c = (uint)cols[p];
const auto v = static_cast<accum_t<T>>(vals[p]);
const uint d_off = ((b * J) + c) * K + k;
const auto d = static_cast<accum_t<T>>(dense[d_off]);
acc += mul(v, d);
}
const uint y_off = ((b * I) + i) * K + k;
out[y_off] = static_cast<T>(acc);
}
}
template <typename T>
kernel void dense_sparse_mul_kernel(
@ -32,10 +127,9 @@ kernel void dense_sparse_mul_kernel(
ulong dense_idx = (ulong)key * (ulong)view_cols + (ulong)col;
ulong val_idx = (ulong)i * (ulong)view_cols + (ulong)col;
using accum_t = typename MulAccum<T>::type;
const accum_t a = static_cast<accum_t>(values[val_idx]);
const accum_t b = static_cast<accum_t>(dense[dense_idx]);
out_values[val_idx] = static_cast<T>(a * b);
const auto a = static_cast<accum_t<T>>(values[val_idx]);
const auto b = static_cast<accum_t<T>>(dense[dense_idx]);
out_values[val_idx] = static_cast<T>(mul(a, b));
}
kernel void intersect_binary_search(
@ -120,6 +214,76 @@ kernel void fused_gather_mul_kernel(
}
}
kernel void build_batch_ptr_from_sorted_batches(
device const long* batches [[buffer(0)]],
device long* batch_ptr [[buffer(1)]],
constant uint2& nnz_B [[buffer(2)]],
uint3 tid [[thread_position_in_grid]])
{
uint b = tid.x;
uint nnz = nnz_B.x;
uint batch = nnz_B.y;
if (b == batch) {
batch_ptr[b] = (long)nnz;
return;
}
uint lo = 0;
uint hi = nnz;
long key = (long)b;
while (lo < hi) {
uint mid = (lo + hi) >> 1;
long v = batches[mid];
if (v < key) lo = mid + 1;
else hi = mid;
}
batch_ptr[b] = (long)lo;
}
template <typename T>
kernel void spmm_addmm_coo(
device const long* indices2d [[buffer(0)]],
device const T* vals [[buffer(1)]],
device const T* dense [[buffer(2)]],
device const T* t_in [[buffer(3)]],
device T* out [[buffer(4)]],
constant uint3& dims [[buffer(5)]],
constant float2& alpha_beta [[buffer(6)]],
constant uint& nnz [[buffer(7)]],
uint3 tid [[thread_position_in_grid]])
{
const uint K = dims.z;
const uint k = tid.x;
const uint i = tid.z;
const float alpha = alpha_beta.x;
const float beta = alpha_beta.y;
device const long* rows = indices2d;
device const long* cols = indices2d + nnz;
const uint start = lower_bound_i64(rows, 0u, nnz, (long)i);
const uint end = upper_bound_i64(rows, 0u, nnz, (long)i);
// accumulator is float for scalar/half/bfloat and float2 for float2
auto acc = static_cast<accum_t<T>>(T(0));
for (uint p = start; p < end; ++p) {
const uint c = (uint)cols[p];
const auto v = static_cast<accum_t<T>>(vals[p]);
const uint dense_off = c * K + k;
const auto d = static_cast<accum_t<T>>(dense[dense_off]);
acc += mul(v, d);
}
const uint off = i * K + k;
const auto base = (beta != 0.0f) ? (static_cast<accum_t<T>>(t_in[off]) * beta) : static_cast<accum_t<T>>(T(0));
const auto y = base + alpha * acc;
out[off] = static_cast<T>(y);
}
#define INSTANTIATE_DENSE_SPARSE_MUL(DTYPE) \
template [[host_name("dense_sparse_mul_kernel_" #DTYPE)]] kernel void \
dense_sparse_mul_kernel<DTYPE>( \
@ -151,6 +315,36 @@ INSTANTIATE_DENSE_SPARSE_MUL(float2);
constant uint2& dims_output [[buffer(8)]], \
uint3 gid [[thread_position_in_grid]]);
INSTANTIATE_FUSED_GATHER_MUL(float);
INSTANTIATE_FUSED_GATHER_MUL(half);
INSTANTIATE_FUSED_GATHER_MUL(bfloat);
INSTANTIATE_FOR_FLOAT_TYPES(INSTANTIATE_FUSED_GATHER_MUL);
#define INSTANTIATE_SPMM_BMM_COO_ROWS_GROUPED(DTYPE) \
template [[host_name("spmm_bmm_coo_rows_grouped_" #DTYPE)]] kernel void \
spmm_bmm_coo_rows_grouped<DTYPE>( \
device const long* rows [[buffer(0)]], \
device const long* cols [[buffer(1)]], \
device const DTYPE* vals [[buffer(2)]], \
device const DTYPE* dense [[buffer(3)]], \
device DTYPE* out [[buffer(4)]], \
device const long* row_ptr [[buffer(5)]], \
constant uint4& dims [[buffer(6)]], \
uint3 tid [[thread_position_in_grid]], \
uint3 ltid [[thread_position_in_threadgroup]], \
uint3 tptg [[threads_per_threadgroup]]);
INSTANTIATE_FOR_ALL_TYPES(INSTANTIATE_SPMM_BMM_COO_ROWS_GROUPED);
#define INSTANTIATE_SPMM_ADDMM_COO(DTYPE) \
template [[host_name("spmm_addmm_coo_" #DTYPE)]] kernel void \
spmm_addmm_coo<DTYPE>( \
device const long* indices2d [[buffer(0)]], \
device const DTYPE* vals [[buffer(1)]], \
device const DTYPE* dense [[buffer(2)]], \
device const DTYPE* t_in [[buffer(3)]], \
device DTYPE* out [[buffer(4)]], \
constant uint3& dims [[buffer(5)]], \
constant float2& alpha_beta [[buffer(6)]], \
constant uint& nnz [[buffer(7)]], \
uint3 tid [[thread_position_in_grid]]);
INSTANTIATE_FOR_ALL_TYPES(INSTANTIATE_SPMM_ADDMM_COO);

View File

@ -110,9 +110,9 @@ class ApplyLogSumExp {
using ElementCompute = ElementCompute_;
using ElementLSE = ElementLSE_;
static int const kElementsPerAccess = ElementsPerAccess;
static int const kCount = kElementsPerAccess;
static const ScaleType::Kind kScale =
static int constexpr kElementsPerAccess = ElementsPerAccess;
static int constexpr kCount = kElementsPerAccess;
static constexpr ScaleType::Kind kScale =
cutlass::epilogue::thread::ScaleType::NoBetaScaling;
using FragmentOutput = Array<ElementOutput, kCount>;

View File

@ -14,16 +14,16 @@ using namespace at;
namespace {
const auto int_min = std::numeric_limits<int>::min();
const auto int_max = std::numeric_limits<int>::max();
const auto long_min = std::numeric_limits<int64_t>::min();
const auto long_max = std::numeric_limits<int64_t>::max();
const auto float_lowest = std::numeric_limits<float>::lowest();
const auto float_min = std::numeric_limits<float>::min();
const auto float_max = std::numeric_limits<float>::max();
const auto double_lowest = std::numeric_limits<double>::lowest();
const auto double_min = std::numeric_limits<double>::min();
const auto double_max = std::numeric_limits<double>::max();
constexpr auto int_min = std::numeric_limits<int>::min();
constexpr auto int_max = std::numeric_limits<int>::max();
constexpr auto long_min = std::numeric_limits<int64_t>::min();
constexpr auto long_max = std::numeric_limits<int64_t>::max();
constexpr auto float_lowest = std::numeric_limits<float>::lowest();
constexpr auto float_min = std::numeric_limits<float>::min();
constexpr auto float_max = std::numeric_limits<float>::max();
constexpr auto double_lowest = std::numeric_limits<double>::lowest();
constexpr auto double_min = std::numeric_limits<double>::min();
constexpr auto double_max = std::numeric_limits<double>::max();
const std::vector<int> ints {
int_min,

View File

@ -146,9 +146,9 @@ uint64_t XPUGeneratorImpl::seed() {
c10::intrusive_ptr<c10::TensorImpl> XPUGeneratorImpl::get_state() const {
// The RNG state comprises the seed, and an offset used for Philox.
static const size_t seed_size = sizeof(uint64_t);
static const size_t offset_size = sizeof(uint64_t);
static const size_t total_size = seed_size + offset_size;
constexpr size_t seed_size = sizeof(uint64_t);
constexpr size_t offset_size = sizeof(uint64_t);
constexpr size_t total_size = seed_size + offset_size;
// The internal state is returned as a CPU byte tensor.
auto state_tensor = at::detail::empty_cpu(
@ -170,9 +170,9 @@ c10::intrusive_ptr<c10::TensorImpl> XPUGeneratorImpl::get_state() const {
void XPUGeneratorImpl::set_state(const c10::TensorImpl& new_state) {
at::xpu::assertNotCapturing(
"Please ensure to utilize the XPUGeneratorImpl::set_state_index method during capturing.");
static const size_t seed_size = sizeof(uint64_t);
static const size_t offset_size = sizeof(uint64_t);
static const size_t total_size = seed_size + offset_size;
constexpr size_t seed_size = sizeof(uint64_t);
constexpr size_t offset_size = sizeof(uint64_t);
constexpr size_t total_size = seed_size + offset_size;
at::detail::check_rng_state(new_state);

View File

@ -6,7 +6,7 @@ import os
import subprocess
import sys
import tempfile
from typing import Callable
from collections.abc import Callable
from torch._inductor.utils import fresh_cache

View File

@ -1751,8 +1751,8 @@ def maybe_snapshot_memory(should_snapshot_memory, suffix):
f"{output_filename.rstrip('.csv')}_{suffix}.pickle",
)
)
except Exception as e:
log.error("Failed to save memory snapshot, %s", e)
except Exception:
log.exception("Failed to save memory snapshot")
torch.cuda.memory._record_memory_history(enabled=None)
@ -2284,9 +2284,11 @@ class BenchmarkRunner:
)
):
is_same = False
except Exception:
except Exception as e:
# Sometimes torch.allclose may throw RuntimeError
is_same = False
exception_string = str(e)
accuracy_status = f"fail_exception: {exception_string}"
return record_status(accuracy_status, dynamo_start_stats=start_stats)
if not is_same:
accuracy_status = "eager_two_runs_differ"
@ -2403,9 +2405,11 @@ class BenchmarkRunner:
force_max_multiplier=force_max_multiplier,
):
is_same = False
except Exception:
except Exception as e:
# Sometimes torch.allclose may throw RuntimeError
is_same = False
exception_string = str(e)
accuracy_status = f"fail_exception: {exception_string}"
return record_status(accuracy_status, dynamo_start_stats=start_stats)
if not is_same:
if self.args.skip_accuracy_check:
@ -4060,7 +4064,7 @@ def run(runner, args, original_dir=None):
else:
optimize_ctx = torch._dynamo.optimize(args.backend, nopython=args.nopython)
experiment = (
speedup_experiment if not args.backend == "torchao" else latency_experiment
speedup_experiment if args.backend != "torchao" else latency_experiment
)
if args.accuracy:
output_filename = f"accuracy_{args.backend}.csv"

View File

@ -1,7 +1,8 @@
import os
from collections import defaultdict
from collections.abc import Callable
from dataclasses import dataclass
from typing import Any, Callable, Optional
from typing import Any, Optional
import matplotlib.pyplot as plt

View File

@ -124,7 +124,7 @@ with open(MODELS_FILENAME) as fh:
continue
batch_size = int(batch_size)
BATCH_SIZE_KNOWN_MODELS[model_name] = batch_size
assert len(BATCH_SIZE_KNOWN_MODELS)
assert BATCH_SIZE_KNOWN_MODELS
try:

View File

@ -296,8 +296,8 @@ class OperatorInputsLoader:
for key in self.operator_db.keys():
try:
op = eval(key)
except AttributeError as ae:
log.warning("Evaluating an op name into an OpOverload: %s", ae)
except AttributeError:
log.warning("Evaluating an op name into an OpOverload", exc_info=True)
continue
yield op

View File

@ -1,4 +1,5 @@
from typing import Any, Callable
from collections.abc import Callable
from typing import Any
import torch

View File

@ -1,7 +1,8 @@
import time
from argparse import ArgumentParser
from collections import defaultdict
from typing import Any, Callable, NamedTuple
from collections.abc import Callable
from typing import Any, NamedTuple
import torch
from torch.autograd import functional

View File

@ -1,5 +1,6 @@
from collections import defaultdict
from typing import Callable, Optional, Union
from collections.abc import Callable
from typing import Optional, Union
import torch
from torch import nn, Tensor

View File

@ -1,5 +1,6 @@
import dataclasses
from typing import Callable, Optional
from collections.abc import Callable
from typing import Optional
all_experiments: dict[str, Callable] = {}

View File

@ -85,7 +85,7 @@ class WeightOnlyInt8QuantHandler:
cur_state_dict[f"{fqn}.weight"] = int8_weight
cur_state_dict[f"{fqn}.scales"] = scales.to(mod.weight.dtype)
elif isinstance(mod, ConditionalFeedForward):
for weight_idx in range(0, 3):
for weight_idx in range(3):
weight_name = f"w{weight_idx + 1}"
scales_name = f"scales{weight_idx + 1}"
weight = getattr(mod, weight_name)

View File

@ -9,8 +9,9 @@ import logging
import time
from abc import abstractmethod
from collections import defaultdict
from collections.abc import Callable
from dataclasses import asdict, dataclass, field
from typing import Any, Callable, Optional
from typing import Any, Optional
from tabulate import tabulate
from tqdm import tqdm

View File

@ -38,12 +38,16 @@ class ConvTranspose1dBenchmark(op_bench.TorchBenchmarkBase):
op_bench.generate_pt_test(
configs.conv_1d_configs_short + configs.conv_1d_configs_long, Conv1dBenchmark
)
op_bench.generate_pt_test(
configs.convtranspose_1d_configs_short
+ configs.conv_1d_configs_short
+ configs.conv_1d_configs_long,
ConvTranspose1dBenchmark,
)
if not torch.backends.mkldnn.is_acl_available():
# convtranpose1d crashes with ACL, see https://github.com/pytorch/pytorch/issues/165654
op_bench.generate_pt_test(
configs.convtranspose_1d_configs_short
+ configs.conv_1d_configs_short
+ configs.conv_1d_configs_long,
ConvTranspose1dBenchmark,
)
"""

View File

@ -1,7 +1,8 @@
import itertools
from collections.abc import Callable
from dataclasses import asdict, dataclass
from functools import partial
from typing import Callable, Union
from typing import Union
import numpy as np
from tabulate import tabulate

View File

@ -3,10 +3,11 @@ import csv
import itertools
import random
from collections import defaultdict
from collections.abc import Callable
from contextlib import nullcontext
from dataclasses import asdict, dataclass
from functools import partial
from typing import Callable, Optional, Union
from typing import Optional, Union
import numpy as np
from tabulate import tabulate
@ -270,7 +271,7 @@ def run_single_backend_sdpa(
if config.calculate_bwd_time:
# TODO: debug backward pass for njt
if eager_sdpa and not config.attn_type == "document_mask":
if eager_sdpa and config.attn_type != "document_mask":
d_out = torch.randn_like(out_eager.transpose(1, 2)).transpose(1, 2)
backward_eager_time = benchmark_torch_function_in_microseconds(
out_eager.backward, d_out, retain_graph=True

View File

@ -1,8 +1,8 @@
import itertools
from collections import defaultdict
from collections.abc import Callable
from contextlib import nullcontext
from dataclasses import asdict, dataclass
from typing import Callable
from tabulate import tabulate
from tqdm import tqdm

View File

@ -1,5 +1,4 @@
#include <c10/core/AllocatorConfig.h>
#include <c10/core/DeviceType.h>
#include <c10/util/env.h>
namespace c10::CachingAllocator {

View File

@ -4,7 +4,6 @@
#include <c10/core/SymNodeImpl.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/util/safe_numerics.h>
#include <functional>
namespace c10 {

View File

@ -9,7 +9,6 @@
#include <c10/core/impl/TorchDispatchModeTLS.h>
#include <c10/util/Logging.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#include <optional>
#include <utility>

View File

@ -1,9 +1,5 @@
#include <c10/core/TensorOptions.h>
#include <c10/core/Device.h>
#include <c10/core/Layout.h>
#include <c10/util/Optional.h>
#include <iostream>
namespace c10 {

View File

@ -2,7 +2,6 @@
#include <c10/core/Allocator.h>
#include <c10/core/StorageImpl.h>
#include <c10/core/alignment.h>
#include <c10/core/impl/COWDeleter.h>
#include <c10/util/Exception.h>
#include <c10/util/ParallelGuard.h>

View File

@ -1,5 +1,4 @@
#include <c10/core/DispatchKey.h>
#include <c10/core/SafePyObject.h>
#include <c10/core/impl/LocalDispatchKeySet.h>
#include <c10/core/impl/TorchDispatchModeTLS.h>
#include <c10/util/irange.h>

View File

@ -1260,6 +1260,9 @@ class DeviceCachingAllocator {
// thread local compile context for each device
static thread_local std::stack<std::string> compile_context;
// thread local user metadata for annotating allocations
static thread_local std::string user_metadata;
public:
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
explicit DeviceCachingAllocator(c10::DeviceIndex id)
@ -1302,6 +1305,14 @@ class DeviceCachingAllocator {
}
}
void setUserMetadata(const std::string& metadata) {
user_metadata = metadata;
}
std::string getUserMetadata() {
return user_metadata;
}
bool checkPoolLiveAllocations(
MempoolId_t mempool_id,
const std::unordered_set<void*>& expected_live_allocations) const {
@ -3682,7 +3693,8 @@ class DeviceCachingAllocator {
mempool_id,
getApproximateTime(),
record_context_ >= RecordContext::ALLOC ? std::move(context) : nullptr,
compile_string);
compile_string,
user_metadata);
// Callbacks should not include any Pytorch call
for (const auto& cb : trace_trackers_) {
@ -3737,6 +3749,7 @@ static void uncached_delete(void* ptr) {
static void local_raw_delete(void* ptr);
thread_local std::stack<std::string> DeviceCachingAllocator::compile_context;
thread_local std::string DeviceCachingAllocator::user_metadata;
#ifdef __cpp_lib_hardware_interference_size
using std::hardware_destructive_interference_size;
#else
@ -3934,6 +3947,18 @@ class NativeCachingAllocator : public CUDAAllocator {
device_allocator[device]->popCompileContext();
}
void setUserMetadata(const std::string& metadata) override {
c10::DeviceIndex device = 0;
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
device_allocator[device]->setUserMetadata(metadata);
}
std::string getUserMetadata() override {
c10::DeviceIndex device = 0;
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
return device_allocator[device]->getUserMetadata();
}
bool isHistoryEnabled() override {
c10::DeviceIndex device = 0;
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));

View File

@ -118,7 +118,8 @@ struct TraceEntry {
MempoolId_t mempool,
approx_time_t time,
std::shared_ptr<GatheredContext> context = nullptr,
std::string compile_context = "")
std::string compile_context = "",
std::string user_metadata = "")
: action_(action),
device_(device),
addr_(addr),
@ -126,7 +127,8 @@ struct TraceEntry {
stream_(stream),
size_(size),
mempool_(std::move(mempool)),
compile_context_(std::move(compile_context)) {
compile_context_(std::move(compile_context)),
user_metadata_(std::move(user_metadata)) {
time_.approx_t_ = time;
}
Action action_;
@ -138,6 +140,7 @@ struct TraceEntry {
MempoolId_t mempool_;
trace_time_ time_{};
std::string compile_context_;
std::string user_metadata_;
};
// Calls made by record_function will save annotations
@ -297,6 +300,10 @@ class CUDAAllocator : public DeviceAllocator {
const std::vector<std::pair<std::string, std::string>>& /*md*/) {}
virtual void pushCompileContext(std::string& md) {}
virtual void popCompileContext() {}
virtual void setUserMetadata(const std::string& metadata) {}
virtual std::string getUserMetadata() {
return "";
}
virtual void attachOutOfMemoryObserver(OutOfMemoryObserver observer) = 0;
// Attached AllocatorTraceTracker callbacks will be called while the
@ -536,6 +543,14 @@ inline void enablePeerAccess(
get()->enablePeerAccess(dev, dev_to_access);
}
inline void setUserMetadata(const std::string& metadata) {
get()->setUserMetadata(metadata);
}
inline std::string getUserMetadata() {
return get()->getUserMetadata();
}
} // namespace c10::cuda::CUDACachingAllocator
namespace c10::cuda {

View File

@ -1,8 +1,6 @@
#include <c10/cuda/CUDADeviceAssertionHost.h>
#include <c10/cuda/CUDAException.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/util/Backtrace.h>
#include <c10/util/Exception.h>
#include <c10/util/env.h>
#include <c10/util/irange.h>
#include <cuda_runtime.h>

View File

@ -4,7 +4,6 @@
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/UniqueVoidPtr.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <unordered_set>
#include <vector>

View File

@ -1,7 +1,6 @@
#include <c10/cuda/CUDAMiscFunctions.h>
#include <c10/util/env.h>
#include <cuda_runtime.h>
#include <cstring>
#include <string>
namespace c10::cuda {

View File

@ -1,7 +1,6 @@
#if !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
#include <c10/cuda/CUDAException.h>
#include <c10/cuda/driver_api.h>
#include <c10/util/CallOnce.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
#include <cuda_runtime.h>

Some files were not shown because too many files have changed in this diff Show More