Update FlexAttention with masking semantic (#133373)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133373
Approved by: https://github.com/yanboliang
This commit is contained in:
drisspg
2024-08-22 10:28:52 -07:00
committed by PyTorch MergeBot
parent e7929809f3
commit 629bd6f718
5 changed files with 87 additions and 20 deletions

View File

@ -17,6 +17,7 @@ from torch.nn.attention.flex_attention import (
_create_empty_block_mask,
_DEFAULT_SPARSE_BLOCK_SIZE,
_identity,
_score_mod_signature,
and_masks,
BlockMask,
create_block_mask,
@ -212,8 +213,7 @@ class TestFlexAttention(InductorTestCase):
):
compiled_error = (golden_out - compiled_out).abs().mean()
ref_error = (golden_out - ref_out).abs().mean()
# TODO: Make this check stricter after updating eager SDPA masked_softmax semantics
if torch.isnan(compiled_error).any() and not torch.isnan(ref_error).any():
if torch.isnan(compiled_error).any() or torch.isnan(ref_error).any():
self.assertTrue(False, "Output/Grad with NaN")
if compiled_error > ref_error * fudge_factor:
name = tensor_name if tensor_name is not None else ""
@ -263,7 +263,7 @@ class TestFlexAttention(InductorTestCase):
def run_test(
self,
score_mod: Callable,
score_mod: _score_mod_signature,
dtype: torch.dtype = torch.float16,
Q_B: int = B,
Q_H: int = H,
@ -273,6 +273,7 @@ class TestFlexAttention(InductorTestCase):
KV_H: int = H,
KV_S: int = S,
KV_D: int = D,
block_mask: Optional[BlockMask] = None,
):
q = torch.randn(
(Q_B, Q_H, Q_S, Q_D), dtype=dtype, device="cuda", requires_grad=True
@ -285,7 +286,6 @@ class TestFlexAttention(InductorTestCase):
)
q_ref, k_ref, v_ref = query_key_value_clones(q, k, v)
q_gold, k_gold, v_gold = query_key_value_clones(q, k, v, torch.float64)
block_mask = None
sdpa_partial = create_attention(
score_mod, block_mask, enable_gqa=(not Q_H == KV_H)
)
@ -1437,7 +1437,8 @@ def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1):
out.sum().backward()
@supported_platform
def test_fully_masked_out_rows(self):
@common_utils.parametrize("compile", [True, False])
def test_fully_masked_out_rows_0_check(self, compile: bool):
# Ensure fully masked out rows won't cause NaNs.
query = torch.randn(
(B, H, S, D), dtype=torch.float32, device="cuda", requires_grad=True
@ -1448,7 +1449,6 @@ def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1):
value = torch.randn(
(B, H, S, D), dtype=torch.float32, device="cuda", requires_grad=True
)
do = torch.randn((B, H, S, D), dtype=torch.float32, device="cuda")
M = S // 2
@ -1456,15 +1456,33 @@ def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1):
return q < M
block_mask = create_block_mask(mask_mod, 1, 1, S, S)
out = torch.compile(flex_attention, dynamic=False)(
query, key, value, block_mask=block_mask
)
# TODO: Switch to self.run_test_with_call after updating eager SDPA masked_softmax semantics
self.assertEqual(out[:, :, M:, :].sum(), 0)
out.backward(do)
flex = (
torch.compile(flex_attention, dynamic=False) if compile else flex_attention
)
out, lse = flex(query, key, value, block_mask=block_mask, return_lse=True)
self.assertEqual(out[:, :, M:, :].sum(), 0)
self.assertTrue((lse[:, :, M:] == 0.0).all())
loss = out.sum() + lse.sum()
loss.backward()
self.assertEqual(query.grad[:, :, M:, :].sum(), 0)
@supported_platform
@common_utils.parametrize("compile", [True, False])
def test_fully_masked_out_rows(self, compile: bool):
M = S // 2
def mask_mod(b, h, q, kv):
return q < M
block_mask = create_block_mask(mask_mod, 1, 1, S, S)
def noop_mod(score, b, h, q_idx, kv_idx):
return score
self.run_test(noop_mod, torch.float32, B, H, S, D, B, H, S, D, block_mask)
@supported_platform
def test_comparison_vs_sdpa(self):
def causal(score, b, h, q_idx, kv_idx):

View File

@ -284,15 +284,20 @@ class TestFlexDecoding(InductorTestCase):
score_mod, block_mask, enable_gqa=(not Q_H == KV_H)
)
compiled_sdpa = torch.compile(sdpa_partial)
golden_out = sdpa_partial(q_gold, k_gold, v_gold)
ref_out = sdpa_partial(q_ref, k_ref, v_ref)
compiled_out = compiled_sdpa(q, k, v)
golden_out, gold_lse = sdpa_partial(q_gold, k_gold, v_gold, return_lse=True)
ref_out, ref_lse = sdpa_partial(q_ref, k_ref, v_ref, return_lse=True)
compiled_out, compiled_lse = compiled_sdpa(q, k, v, return_lse=True)
self._check_out(
golden_out,
ref_out,
compiled_out,
)
self._check_out(
gold_lse,
ref_lse,
compiled_lse,
)
def run_test_with_call(
self,
@ -762,6 +767,38 @@ def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1):
self.run_test(bias_mod)
@supported_platform
def test_fully_masked_out_rows_0_check_gqa(self):
# Ensure fully masked out rows won't cause NaNs.
query = torch.randn(
(B, Hq, S, D), dtype=torch.float32, device="cuda", requires_grad=True
)
key = torch.randn(
(B, Hkv, S, D), dtype=torch.float32, device="cuda", requires_grad=True
)
value = torch.randn(
(B, Hkv, S, D), dtype=torch.float32, device="cuda", requires_grad=True
)
M = S // 2
def mask_mod(b, h, q, kv):
return q < M
block_mask = create_block_mask(mask_mod, 1, 1, S, S)
flex = torch.compile(flex_attention, dynamic=False)
out, lse = flex(
query, key, value, block_mask=block_mask, enable_gqa=True, return_lse=True
)
self.assertEqual(out[:, :, M:, :].sum(), 0)
self.assertTrue((lse[:, :, M:] == 0.0).all())
loss = out.sum() + lse.sum()
loss.backward()
self.assertEqual(query.grad[:, :, M:, :].sum(), 0)
@supported_platform
def test_windowed_no_mask_vs_sdpa(self):
score_mod = _generate_windowed(1000)

View File

@ -204,11 +204,12 @@ def math_attention(
mask_mod_other_buffers,
)
# TODO Unconditionally return logsumexp for backwards
# if any(t.requires_grad for t in (query, key, value)):
# Set fully masked rows' sumexp to 0.0
logsumexp = post_mod_scores.logsumexp(dim=-1)
masked_rows = torch.all(post_mod_scores == -float("inf"), dim=-1)
logsumexp = torch.where(masked_rows, 0.0, logsumexp)
post_mod_scores = post_mod_scores.softmax(dim=-1)
post_mod_scores = torch._safe_softmax(post_mod_scores, dim=-1)
return post_mod_scores.to(query.dtype) @ value, logsumexp / math.log(2)

View File

@ -302,8 +302,13 @@ compute_flex_attention = r"""
)
# Store output and logsumexp
l_i = tl.where(l_i == 0, 1, l_i)
# [Note] Handle fully masked out rows:
# Li will be the sum(e^(-inf)) == 0.0 for masked out rows, mi will be -inf.
# We set Li to 1.0 which will result in lse/out = 0.0 | after the log(li) + mi(0.0) step
l_i = tl.where(l_i == 0.0, 1, l_i)
masked_out_rows = (m_i == float("-inf"))
m_i = tl.where(masked_out_rows, 0, m_i)
acc = acc / l_i[:, None]
idx_z = tl.program_id(1) // HQ
idx_hq = tl.program_id(1) % HQ

View File

@ -524,11 +524,17 @@ def create_flex_decoding_kernel(*args, **kwargs):
# Reduction
g_M = lowerings[aten.max](buf_M, dim=1, keepdim=True)[0]
# See [Note] Handle fully masked out rows:
# g_M Is the global max among split kv blocks.
masked_rows = lowerings[aten.eq](g_M, -float("inf"))
g_M = lowerings[aten.where](masked_rows, 0.0, g_M)
adj_M = lowerings[aten.sub](buf_M, g_M)
alpha = lowerings[aten.exp2](adj_M)
buf_L = lowerings[aten.mul](buf_L, alpha)
g_L = lowerings[aten.sum](buf_L, axis=1)
masked_rows_squeezed = lowerings[aten.squeeze](masked_rows, dim=1)
g_L = lowerings[aten.where](masked_rows_squeezed, 1.0, g_L)
logsumexp = lowerings[aten.log2](g_L)
logsumexp = lowerings[aten.add](logsumexp, lowerings[aten.squeeze](g_M, dim=1))