[numpy] Add torch.moveaxis (#48581)

Summary:
Reference: https://github.com/pytorch/pytorch/issues/38349 #36048 https://github.com/pytorch/pytorch/pull/41480#issuecomment-734398262

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48581

Reviewed By: bdhirsh

Differential Revision: D25276307

Pulled By: mruberry

fbshipit-source-id: 3e3e4df1343c5ce5b71457badc43f08c419ec5c3
This commit is contained in:
kshitij12345
2020-12-03 10:30:00 -08:00
committed by Facebook GitHub Bot
parent befab0d9d4
commit 5c9cef9a6c
14 changed files with 153 additions and 82 deletions

View File

@ -86,95 +86,97 @@ class TestShapeOps(TestCase):
shape = self._rand_shape(4, min_size=5, max_size=10)
x = _generate_input(shape, dtype, device, False)
# Invalid `source` and `destination` dimension
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
torch.movedim(x, 5, 0)
for fn in [torch.movedim, torch.moveaxis]:
# Invalid `source` and `destination` dimension
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
fn(x, 5, 0)
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
torch.movedim(x, 0, 5)
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
fn(x, 0, 5)
# Mismatch in size of `source` and `destination`
with self.assertRaisesRegex(RuntimeError, "movedim: Invalid source or destination dims:"):
torch.movedim(x, (1, 0), (0, ))
# Mismatch in size of `source` and `destination`
with self.assertRaisesRegex(RuntimeError, "movedim: Invalid source or destination dims:"):
fn(x, (1, 0), (0, ))
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `source`"):
torch.movedim(x, (0, 0), (0, 1))
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `source`"):
fn(x, (0, 0), (0, 1))
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `source`"):
torch.movedim(x, (0, 1, 0), (0, 1, 2))
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `source`"):
fn(x, (0, 1, 0), (0, 1, 2))
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `destination`"):
torch.movedim(x, (0, 1), (1, 1))
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `destination`"):
fn(x, (0, 1), (1, 1))
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `destination`"):
torch.movedim(x, (0, 1, 2), (1, 0, 1))
with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `destination`"):
fn(x, (0, 1, 2), (1, 0, 1))
@dtypes(torch.int64, torch.float, torch.complex128)
def test_movedim(self, device, dtype):
for nd in range(5):
shape = self._rand_shape(nd, min_size=5, max_size=10)
x = _generate_input(shape, dtype, device, with_extremal=False)
for random_negative in [True, False]:
for src_dim, dst_dim in permutations(range(nd), r=2):
random_prob = random.random()
for fn in [torch.moveaxis, torch.movedim]:
for nd in range(5):
shape = self._rand_shape(nd, min_size=5, max_size=10)
x = _generate_input(shape, dtype, device, with_extremal=False)
for random_negative in [True, False]:
for src_dim, dst_dim in permutations(range(nd), r=2):
random_prob = random.random()
if random_negative and random_prob > 0.66:
src_dim = src_dim - nd
elif random_negative and random_prob > 0.33:
dst_dim = dst_dim - nd
elif random_negative:
src_dim = src_dim - nd
dst_dim = dst_dim - nd
if random_negative and random_prob > 0.66:
src_dim = src_dim - nd
elif random_negative and random_prob > 0.33:
dst_dim = dst_dim - nd
elif random_negative:
src_dim = src_dim - nd
dst_dim = dst_dim - nd
# Integer `source` and `destination`
torch_fn = partial(torch.movedim, source=src_dim, destination=dst_dim)
np_fn = partial(np.moveaxis, source=src_dim, destination=dst_dim)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
# Integer `source` and `destination`
torch_fn = partial(fn, source=src_dim, destination=dst_dim)
np_fn = partial(np.moveaxis, source=src_dim, destination=dst_dim)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
if nd == 0:
continue
if nd == 0:
continue
def make_index_negative(sequence, idx):
sequence = list(sequence)
sequence[random_idx] = sequence[random_idx] - nd
return tuple(src_sequence)
def make_index_negative(sequence, idx):
sequence = list(sequence)
sequence[random_idx] = sequence[random_idx] - nd
return tuple(src_sequence)
for src_sequence in permutations(range(nd), r=random.randint(1, nd)):
# Sequence `source` and `destination`
dst_sequence = tuple(random.sample(range(nd), len(src_sequence)))
for src_sequence in permutations(range(nd), r=random.randint(1, nd)):
# Sequence `source` and `destination`
dst_sequence = tuple(random.sample(range(nd), len(src_sequence)))
# Randomly change a dim to a negative dim representation of itself.
random_prob = random.random()
if random_negative and random_prob > 0.66:
random_idx = random.randint(0, len(src_sequence) - 1)
src_sequence = make_index_negative(src_sequence, random_idx)
elif random_negative and random_prob > 0.33:
random_idx = random.randint(0, len(src_sequence) - 1)
dst_sequence = make_index_negative(dst_sequence, random_idx)
elif random_negative:
random_idx = random.randint(0, len(src_sequence) - 1)
dst_sequence = make_index_negative(dst_sequence, random_idx)
random_idx = random.randint(0, len(src_sequence) - 1)
src_sequence = make_index_negative(src_sequence, random_idx)
# Randomly change a dim to a negative dim representation of itself.
random_prob = random.random()
if random_negative and random_prob > 0.66:
random_idx = random.randint(0, len(src_sequence) - 1)
src_sequence = make_index_negative(src_sequence, random_idx)
elif random_negative and random_prob > 0.33:
random_idx = random.randint(0, len(src_sequence) - 1)
dst_sequence = make_index_negative(dst_sequence, random_idx)
elif random_negative:
random_idx = random.randint(0, len(src_sequence) - 1)
dst_sequence = make_index_negative(dst_sequence, random_idx)
random_idx = random.randint(0, len(src_sequence) - 1)
src_sequence = make_index_negative(src_sequence, random_idx)
torch_fn = partial(torch.movedim, source=src_sequence, destination=dst_sequence)
np_fn = partial(np.moveaxis, source=src_sequence, destination=dst_sequence)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
torch_fn = partial(fn, source=src_sequence, destination=dst_sequence)
np_fn = partial(np.moveaxis, source=src_sequence, destination=dst_sequence)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
# Move dim to same position
x = torch.randn(2, 3, 5, 7, 11)
torch_fn = partial(torch.movedim, source=(0, 1), destination=(0, 1))
np_fn = partial(np.moveaxis, source=(0, 1), destination=(0, 1))
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
# Move dim to same position
x = torch.randn(2, 3, 5, 7, 11)
torch_fn = partial(fn, source=(0, 1), destination=(0, 1))
np_fn = partial(np.moveaxis, source=(0, 1), destination=(0, 1))
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
torch_fn = partial(torch.movedim, source=1, destination=1)
np_fn = partial(np.moveaxis, source=1, destination=1)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
torch_fn = partial(fn, source=1, destination=1)
np_fn = partial(np.moveaxis, source=1, destination=1)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
# Empty Sequence
torch_fn = partial(torch.movedim, source=(), destination=())
np_fn = partial(np.moveaxis, source=(), destination=())
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
# Empty Sequence
torch_fn = partial(fn, source=(), destination=())
np_fn = partial(np.moveaxis, source=(), destination=())
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
@dtypes(torch.float, torch.bool)
def test_diag(self, device, dtype):