[BE][9/16] fix typos in torch/ (torch/csrc/) (#156319)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156319
Approved by: https://github.com/albanD
ghstack dependencies: #156313, #156314, #156315, #156316, #156317
This commit is contained in:
Xuehai Pan
2025-06-22 22:22:33 +08:00
committed by PyTorch MergeBot
parent ced90016c1
commit 5b210bb3a6
32 changed files with 75 additions and 75 deletions

View File

@ -1179,7 +1179,6 @@ exclude_patterns = [
'torch/utils/**',
'torch/csrc/jit/**',
'torch/csrc/jit/[a-o]*/**',
'torch/csrc/[a-i]*/**',
'torch/csrc/distributed/**',
]
init_command = [

View File

@ -15,7 +15,7 @@ namespace torch::data {
/// A dataloader for stateless datasets.
///
/// This dataloader follows the traditional PyTorch dataloader design, whereby a
/// (posssibly) stateful sampler produces *batch requests* for a stateless
/// (possibly) stateful sampler produces *batch requests* for a stateless
/// dataset, which acts as a simple batch request to batch mapping. The batch
/// request will often be an array of indices, and if the dataset is a simple
/// image dataset, the dataset would produce the images at those indices.

View File

@ -234,7 +234,7 @@ class BatchDataBuffer {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
ExampleSampler& example_sampler_;
// configurable maximun number of elements the queue can hold at one time.
// configurable maximum number of elements the queue can hold at one time.
size_t queue_capacity_;
// When set to true, it wakes the writer threads from the wait and exit
@ -286,7 +286,7 @@ struct ChunkDatasetOptions {
/// The capacity of the queue for batch caching.
TORCH_ARG(size_t, cache_size) = 2048;
// The number of chunks to perfrom cross-chunk shuffling. Default to 1 meaning
// The number of chunks to perform cross-chunk shuffling. Default to 1 meaning
// no cross-chunk shuffling. When it is equal to n (n > 1), n random
// chunks will be loaded at once and example shuffling will be performed
// across all those n chunks.
@ -303,9 +303,10 @@ struct ChunkDatasetOptions {
///
/// Unlike regular dataset, chunk dataset require two samplers to operate and
/// keeps an internal state. `ChunkSampler` selects, which chunk to load next,
/// while the `ExampleSampler` determins the order of Examples that are returned
/// in each `get_batch` call. The hierarchical sampling approach used here is
/// inspired by this paper http://martin.zinkevich.org/publications/nips2010.pdf
/// while the `ExampleSampler` determines the order of Examples that are
/// returned in each `get_batch` call. The hierarchical sampling approach used
/// here is inspired by this paper
/// http://martin.zinkevich.org/publications/nips2010.pdf
template <
typename ChunkReader,
typename ChunkSampler = samplers::RandomSampler,
@ -346,7 +347,7 @@ class ChunkDataset final
}
/// Default get_batch method of BatchDataset. This method returns
/// Example batches created from the preloaded chunks. The implemenation
/// Example batches created from the preloaded chunks. The implementation
/// is dataset agnostic and does not need overriding in different chunk
/// datasets.
BatchType get_batch(size_t batch_size) override {

View File

@ -24,7 +24,7 @@ class Sampler {
/// Resets the `Sampler`'s internal state.
/// Typically called before a new epoch.
/// Optionally, accepts a new size when reseting the sampler.
/// Optionally, accepts a new size when resetting the sampler.
virtual void reset(std::optional<size_t> new_size) = 0;
/// Returns the next index if possible, or an empty optional if the

View File

@ -344,7 +344,7 @@ namespace detail {
inline Tensor glu(const Tensor& input, int64_t dim) {
TORCH_CHECK(
input.dim() != 0,
"glu does not suppport scalars because halving size must be even");
"glu does not support scalars because halving size must be even");
return torch::glu(input, dim);
}
} // namespace detail

View File

@ -130,7 +130,7 @@ class ModuleDictImpl : public Cloneable<ModuleDictImpl> {
return modules_.is_empty();
}
/// Check if the centain parameter with the key in the `ModuleDict`.
/// Check if the certain parameter with the key in the `ModuleDict`.
bool contains(const std::string& key) const noexcept {
return modules_.contains(key);
}

View File

@ -107,7 +107,7 @@ class ParameterDictImpl : public Cloneable<ParameterDictImpl> {
parameters_.clear();
}
/// Check if the centain parameter with the key in the ParameterDict
/// Check if the certain parameter with the key in the ParameterDict
bool contains(const std::string& key) const noexcept {
return parameters_.contains(key);
}

View File

@ -101,7 +101,7 @@ class TORCH_API InputArchive final {
std::vector<std::string> keys();
/// Forwards all arguments to `read()`.
/// Useful for generic code that can be re-used for both `InputArchive` and
/// Useful for generic code that can be reused for both `InputArchive` and
/// `OutputArchive` (where `operator()` forwards to `write()`).
template <typename... Ts>
void operator()(Ts&&... ts) {

View File

@ -66,7 +66,7 @@ class TORCH_API OutputArchive final {
void save_to(const std::function<size_t(const void*, size_t)>& func);
/// Forwards all arguments to `write()`.
/// Useful for generic code that can be re-used for both `OutputArchive` and
/// Useful for generic code that can be reused for both `OutputArchive` and
/// `InputArchive` (where `operator()` forwards to `read()`).
template <typename... Ts>
void operator()(Ts&&... ts) {

View File

@ -19,7 +19,7 @@ TransformerEncoderLayerImpl::TransformerEncoderLayerImpl(
void TransformerEncoderLayerImpl::reset() {
// NOTE: reset() is for initializing the model only, calling reset() after the
// model is created will throw exceptionss. Call reset_parameter() if the
// model is created will throw exceptions. Call reset_parameter() if the
// created model needs a reset
self_attn = this->register_module(

View File

@ -2904,7 +2904,7 @@ Tensor softplus_double_backward(
// 4. Return the as_strided view of the storage tensor using input geometry.
//
// See NOTE [ Detecting Memory Overlap Within A Strided Tensor ] on how to
// roughly detech overlapping memory.
// roughly detect overlapping memory.
// NOTE [ Detecting Memory Overlap Within A Strided Tensor ]
//
@ -2994,7 +2994,7 @@ Tensor softplus_double_backward(
// Now that we established the above claim (***), we consider the
// view operation as first sorting the dimensions (i.e., blocks),
// apply the original view (since it only cares dimensions being
// consecutive and contiguous withtin each block), and then undo
// consecutive and contiguous within each block), and then undo
// the sort.
//
// Consider a single block B in the output,
@ -3046,7 +3046,7 @@ Tensor softplus_double_backward(
// size'[i] <= floor(size[i] / k)
//
// If size'[i] = 1, invariant is obviously satisfied as we are
// just removing a dimension (afte step (1)).
// just removing a dimension (after step (1)).
//
// Assume size'[i] > 1.
//
@ -5244,7 +5244,7 @@ bool any_variable_defined(const variable_list& variables) {
// Derivations for the householder_product.backward method.
//
// Given a sequence of vectors v_1, ..., v_n and a sequence of scalars tau_1,
// ..., tau_k, the torch.linalg.householder_product computes the firt n columns
// ..., tau_k, the torch.linalg.householder_product computes the first n columns
// of the following product: Q = (I - tau_1 v_1 v_1^H) ... (I - tau_k v_k
// v_k^H). Let
// H_i(sigma) := I - sigma v_i v_i^H, so Q = (H_1(sigma_1) ...
@ -5648,7 +5648,7 @@ std::tuple<Tensor, Tensor, Tensor> ormqr_backward(
// left = false and transpose = true is very much similar with just
// transposed arguments passed into householder_product_backward.
// Ormqr computes B = H_1 * ... * H_k * A.
// The sensivity wrt H_i is given by (see notes in
// The sensitivity wrt H_i is given by (see notes in
// householder_product_backward) Tr(H_i_plus B B_grad^H H_i_minus dH_i),
// so, since householder_product_backward respects `for i in range(k)`, we
// could reuse householder_product_backward with

View File

@ -278,7 +278,7 @@ static void general_trace_function(
tracer::addOutput(node, iter->toTensorList());
} else {
throw std::runtime_error(
"unsupported ouptut list type: " + elem_type->str());
"unsupported output list type: " + elem_type->str());
}
} else if (type->kind() == TypeKind::ClassType) {
AT_ASSERT(iter->isObject());

View File

@ -30,7 +30,7 @@ struct TORCH_API AnomalyMode {
///
/// Anomaly detection mode is useful for debugging problems happening
/// in the backward, such as unexpectedly modified tensors or NaNs
/// occuring in the backward.
/// occurring in the backward.
///
/// The enabling of anomaly mode is global - as soon as there is one
/// such guard, it is enabled for all computation and threads. It also

View File

@ -53,7 +53,7 @@ using at::Tensor;
//
// This layout constraint is ensured in the `set_fw_grad` function below
// More complex cases arrise when non-dual Tensor interact with dual Tensors.
// More complex cases arise when non-dual Tensor interact with dual Tensors.
// The two most important cases are:
//
// # Have:
@ -222,7 +222,7 @@ void AutogradMeta::set_fw_grad(
if (utils::has_same_meta(new_grad, base) &&
utils::has_same_meta(new_grad, self)) {
// TODO extend this special case to when the underlying storage of
// new_grad can be re-used.
// new_grad can be reused.
new_base_fw_grad = new_grad;
} else {
new_base_fw_grad =

View File

@ -611,7 +611,7 @@ auto Engine::thread_main(const std::shared_ptr<GraphTask>& graph_task) -> void {
}
}
// Reentrant call will re-use the graph_task's owner thread ready_queue for
// Reentrant call will reuse the graph_task's owner thread ready_queue for
// queueing tasks (NOTE: this is not true in the async_mode of the engine).
// While we can create separate ready queue for each new reentrant
// thread, but sharing the same cpu_ready_queue with parent thread is a
@ -1228,7 +1228,7 @@ void Engine::evaluate_function(
}
static uint64_t compute_min_topological_nr(const edge_list& outputs) {
// Computes the mininum topological number among all the outputs
// Computes the minimum topological number among all the outputs
if (outputs.empty()) {
return 0;
}

View File

@ -27,7 +27,7 @@ struct ForwardGrad;
// - Ensure that we can keep the level that we expose to the user API simple
// (an integer
// that represents the nesting depth) while avoiding confusions when the
// level index is re-used.
// level index is reused.
// The important external APIs from this file are:
// - ForwardADLevel::get_next_idx() that can be used to enter a new level and

View File

@ -67,7 +67,7 @@ TORCH_API std::shared_ptr<Node> get_current_node();
// or more input `Variable`s and producing zero or more output `Variable`s. All
// functions in PyTorch's autograd machinery derive from this class and
// override its `apply` method. Instances of such subclasses will then be
// invokable via the call operator.
// invocable via the call operator.
//
// Nodes in the Autograd Graph
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@ -592,7 +592,7 @@ struct TORCH_API Node : std::enable_shared_from_this<Node> {
// 1) Extract tensors/symint args
// 2) Collect node information for specialization and caching
// Implementations in subclasses should call args.collect() with all node
// attrs. These functions are only called durring backward.
// attrs. These functions are only called during backward.
virtual void compiled_args(CompiledNodeArgs& args) const {
TORCH_CHECK_NOT_IMPLEMENTED(
false, std::string("compiled_args not implemented: ") + name());

View File

@ -21,7 +21,7 @@ variable_list Error::apply(variable_list&& inputs) const {
}
void Error::compiled_args(CompiledNodeArgs& args) const {
// throw the error durring collect, the graph won't get compiled
// throw the error during collect, the graph won't get compiled
apply(variable_list());
}

View File

@ -605,7 +605,7 @@ static PyObject* set_autocast_enabled(
HANDLE_TH_ERRORS
static PythonArgParser parser(
{"set_autocast_enabled(std::string_view device_type, bool enabled)",
"set_autocast_enabled(bool enabled)"}); // this signature is depracated.
"set_autocast_enabled(bool enabled)"}); // this signature is deprecated.
ParsedArgs<2> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
// Set at::kCUDA as default value to prevent BC-breaking changes.
@ -628,7 +628,7 @@ static PyObject* is_autocast_enabled(
HANDLE_TH_ERRORS
static PythonArgParser parser(
{"is_autocast_enabled(std::string_view device_type)",
"is_autocast_enabled()"}); // this signature is depracated.
"is_autocast_enabled()"}); // this signature is deprecated.
ParsedArgs<1> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
// Set at::kCUDA as default value to prevent BC-breaking changes.

View File

@ -622,7 +622,7 @@ void prepareProfiler(
/*
* Sending a warning and passing the non-standard event to the backend
* Backend can abort if the event is not supported.
* TODO Should we gracefully drop the invalid event if we have atleast one
* TODO Should we gracefully drop the invalid event if we have at least one
* valid?
*/
auto is_standard_event = [](const std::string& event) -> bool {

View File

@ -186,7 +186,7 @@ struct TORCH_CUDA_CPP_API CUDAPluggableAllocator
std::function<void(int, c10::cuda::MempoolId_t)> end_allocate_to_pool_fn_;
std::function<void(int, c10::cuda::MempoolId_t)> relase_pool_fn_;
std::mutex allocator_mutex_;
// We do the bookeeping here in order to simplify custom allocators
// We do the bookkeeping here in order to simplify custom allocators
std::unordered_map<void*, _AllocationMetadata> allocation_metadata_;
bool initialized_ = false;

View File

@ -21,7 +21,7 @@ std::string cuGDSFileGetErrorString(T status) {
: std::string(c10::utils::str_error(errno));
}
// To get error message for Buf/Handle registeration APIs that return
// To get error message for Buf/Handle registration APIs that return
// CUfileError_t
template <
class T,

View File

@ -1,2 +1,2 @@
# torch::deploy has been moved to pytorch/multipy
Please check out [https://github.com/pytorch/multipy](https://github.com/pytorch/multipy) to find the new home for torch::deploy.
# torch::deploy has been moved to pytorch/multipy <!-- codespell:ignore -->
Please check out [https://github.com/pytorch/multipy](https://github.com/pytorch/multipy) to find the new home for torch::deploy. <!-- codespell:ignore -->

View File

@ -98,7 +98,7 @@ struct TORCH_API PyCompilerGuard {
// including torch/csrc/autograd/engine.h breaks BC by somehow introducing
// symbol resolution issues. Instead requiring downstream users to include
// engine.h to access collect_input_metadata, we provide it here (with a
// different name to avoid ambigous symbols...)
// different name to avoid ambiguous symbols...)
TORCH_API std::vector<std::optional<InputMetadata>> get_input_metadata(
const edge_list& edges);
@ -1068,7 +1068,7 @@ class SwapSavedVariables {
// (e.g. MulBackward0_apply_functional). Compiled Autograd's initial graph
// capture wants to take a variant of this function and proxy it into the graph.
// Every autograd node defines an apply_with_saved function, that when invoked,
// proxys a call to a function into the Compiled Autograd graph.
// proxies a call to a function into the Compiled Autograd graph.
//
// Some requirements that we have are:
// - The proxy'ed function must have inputs that are FX-graphable types.

View File

@ -274,7 +274,7 @@ PyObject* dynamo__custom_eval_frame(
// NB: We could use extract_cache_entry to get the cache_entry, but
// extract_cache_entry returns a borrowed reference. Modifying a borrowed
// reference seems wrong. Therefore, we directly access the
// extra->cache_entry. extra wont be NULL here.
// extra->cache_entry. extra won't be NULL here.
CacheEntry* new_cache_entry =
create_cache_entry(extra, guarded_code, backend);

View File

@ -132,7 +132,7 @@ void destroy_extra_state(void* obj);
// Clears the existing object sitting on the extra scratch spance and sets it
// up with the new state. Note that _PyCode_SetExtra calls the
// destroy_extra_state deleter internally, and therefore we don't call it
// explicity here.
// explicitly here.
// Ownership contract
// args
@ -148,7 +148,7 @@ void destroy_extra_state(void* obj);
// scratch space.
void set_extra_state(PyCodeObject* code, ExtraState* extra_state);
// Creates a new extra state and put it on the extra scrach space of the code
// Creates a new extra state and put it on the extra scratch space of the code
// object.
// Ownership contract

View File

@ -60,7 +60,7 @@ typedef struct {
PyTupleObject* it_seq; /* Set to NULL when iterator is exhausted */
} _PyTupleIterObject;
// Copied from CPython, and given a unified name for different Python verions.
// Copied from CPython, and given a unified name for different Python versions.
// https://github.com/python/cpython/blob/7f71003b222ad398713514c2b55d34dc05dba6bc/Objects/rangeobject.c#L765-L771
typedef struct {
PyObject_HEAD
@ -124,7 +124,7 @@ TensorCheck::TensorCheck(
// See note in guards.py [Note - On Export Tensor Guards]
// Logic parallel to here must be maintained in python
bool TensorCheck::check(const LocalState& state, const at::Tensor& v) {
// In terms of a sparse_csr tensor, it does not support strides informatio
// In terms of a sparse_csr tensor, it does not support strides information
c10::SymIntArrayRef sym_strides(std::vector<SymInt>(v.ndimension(), -1));
bool does_not_support_stride = v.layout() == c10::kSparseCsr ||
v.layout() == c10::kSparseCsc || v.layout() == c10::kSparseBsc ||
@ -2407,7 +2407,7 @@ class GuardAccessor {
* value passed to the check function to call the check function of the child
* guard manager.
*
* Performace optimization for fail fast - An optimization for runtime here is
* Performance optimization for fail fast - An optimization for runtime here is
* to sort the execution of child guards depending on the failure count. This
* ensures that we run the guards that are more prone to fail statistically
* first. This can improve the cache lookup time when we have multiple cache
@ -2831,7 +2831,7 @@ class RootGuardManager : public GuardManager {
template <typename T>
bool check_nopybind_template(T* value) { // borrowed ref
// Check [Note on GIL interaction with mutex lock] for details on why we
// need mutex and its interactions wth GIL.
// need mutex and its interactions with GIL.
PyThreadState* _save = nullptr;
Py_UNBLOCK_THREADS; // ; is added to avoid clang-formatting
std::lock_guard<std::mutex> lock_guard(_lock);
@ -2889,7 +2889,7 @@ class RootGuardManager : public GuardManager {
GuardDebugInfo check_verbose_nopybind(
PyObject* value) override { // borrowed ref
// Check [Note on GIL interaction with mutex lock] for details on why we
// need mutex and its interactions wth GIL.
// need mutex and its interactions with GIL.
PyThreadState* _save = nullptr;
Py_UNBLOCK_THREADS; // ; is added to avoid clang-formatting
std::lock_guard<std::mutex> lock_guard(_lock);
@ -2992,7 +2992,7 @@ class RootGuardManager : public GuardManager {
LocalState _local_state;
private:
// All the relational guards under this guard mananger. We only use these
// All the relational guards under this guard manager. We only use these
// when the guard evaluates to False. This ensures that guard state is reset
// on guard failure so that next invocation is clean.
std::vector<std::shared_ptr<RelationalGuard>> _relational_guard_resetters;
@ -3575,7 +3575,7 @@ class TENSOR_MATCH : public LeafGuard {
};
/**
* Represents __getattr__ acccessor.
* Represents __getattr__ accessor.
*/
class GetAttrGuardAccessor : public GuardAccessor {
public:
@ -3623,7 +3623,7 @@ class GetAttrGuardAccessor : public GuardAccessor {
}
std::string repr() const override {
// Helpful when priting GuardManager tree structure.
// Helpful when printing GuardManager tree structure.
return "GetAttrGuardAccessor(" + py::str(_attr_name).cast<std::string>() +
")";
}
@ -3651,7 +3651,7 @@ class GetAttrGuardAccessor : public GuardAccessor {
};
/**
* Represents object.__getattribute__(obj, attr_name) acccessor.
* Represents object.__getattribute__(obj, attr_name) accessor.
*/
class GenericGetAttrGuardAccessor : public GuardAccessor {
public:
@ -3699,7 +3699,7 @@ class GenericGetAttrGuardAccessor : public GuardAccessor {
}
std::string repr() const override {
// Helpful when priting GuardManager tree structure.
// Helpful when printing GuardManager tree structure.
return "GenericGetAttrGuardAccessor(" +
py::str(_attr_name).cast<std::string>() + ")";
}
@ -3730,7 +3730,7 @@ class GenericGetAttrGuardAccessor : public GuardAccessor {
};
/**
* Represents x.__dict__ acccessor.
* Represents x.__dict__ accessor.
*/
class GetGenericDictGuardAccessor : public GuardAccessor {
public:
@ -3777,7 +3777,7 @@ class GetGenericDictGuardAccessor : public GuardAccessor {
}
std::string repr() const override {
// Helpful when priting GuardManager tree structure.
// Helpful when printing GuardManager tree structure.
return "GetGenericDictGuardAccessor";
}
@ -3798,7 +3798,7 @@ class GetGenericDictGuardAccessor : public GuardAccessor {
};
/**
* Represents __getitem__ acccessor.
* Represents __getitem__ accessor.
*/
class GetItemGuardAccessor : public GuardAccessor {
public:
@ -3995,7 +3995,7 @@ class FrameLocalsGuardAccessor : public GuardAccessor {
};
/**
* Represents dict[name] acccessor. Needed since DictGuardManager does not
* Represents dict[name] accessor. Needed since DictGuardManager does not
* support sorting. We differentiate it from GetItemGuardAccessor because
* PyDict_GetItem should be faster than PyObject_GetItem.
*/
@ -4023,7 +4023,7 @@ class DictGetItemGuardAccessor : public GuardAccessor {
_guard_manager->has_no_accessors()) {
// immutable object and dict tag matches, we can skip the guard subtree.
// NB: We only skip the subtree if there are no accessors in the subtree.
// This is specificallly for tensors which are used in symbolic shape C++
// This is specifically for tensors which are used in symbolic shape C++
// guards, and therefore have accessors on the tensor GuardManager itself.
return true;
}
@ -4244,7 +4244,7 @@ std::string to_string(TensorProperty prop) {
}
/**
* Represents tensor.size/shape/storage_offset acccessor.
* Represents tensor.size/shape/storage_offset accessor.
*/
template <TensorProperty _prop>
class TensorPropertyGuardAccessor : public GuardAccessor {
@ -4342,7 +4342,7 @@ class TensorPropertyGuardAccessor : public GuardAccessor {
}
std::string repr() const override {
// Helpful when priting GuardManager tree structure.
// Helpful when printing GuardManager tree structure.
return "TensorPropertyGuardAccessor<" + to_string(_prop) + +">(" +
std::to_string(_index) + ")";
}
@ -4434,7 +4434,7 @@ class IndexedGuardAccessor : public GuardAccessor {
};
/**
* Represents tensor.grad acccessor.
* Represents tensor.grad accessor.
*/
class GradGuardAccessor : public GuardAccessor {
public:
@ -4485,7 +4485,7 @@ class GradGuardAccessor : public GuardAccessor {
}
std::string repr() const override {
// Helpful when priting GuardManager tree structure.
// Helpful when printing GuardManager tree structure.
return "GradGuardAccessor(grad)";
}
@ -4654,7 +4654,7 @@ class FuncKwDefaultsGuardAccessor : public GuardAccessor {
};
/**
* Represents f_globals acccessor. This sits as a child accessor of the
* Represents f_globals accessor. This sits as a child accessor of the
* RootGuardManager.
*/
class GlobalsGuardAccessor : public GuardAccessor {
@ -4847,7 +4847,7 @@ class TupleIteratorGetItemAccessor : public GuardAccessor {
* GlobalWeakRef accessor. Dynamo can insert a weakref object into the frame
* globals. This accessor reads the globals and then calls the weakref object
* to get the underlying object. This is a child of GlobalsGuardAccessor.
* Therefore, we will get the globals dict while caling check_nopybind.
* Therefore, we will get the globals dict while calling check_nopybind.
*/
class GlobalWeakRefGuardAccessor : public GuardAccessor {
public:
@ -5207,7 +5207,7 @@ void install_object_aliasing_guard(
std::shared_ptr<RelationalGuard> guard =
std::make_shared<OBJECT_ALIASING>(std::move(verbose_code_parts));
// Register the resetter on the root guard mananger, so that it can reset
// Register the resetter on the root guard manager, so that it can reset
// the newly added relational guard when the guard eval fails.
x->get_root()->add_relational_guard_resetter(guard);
@ -5227,7 +5227,7 @@ void install_no_tensor_aliasing_guard(
std::shared_ptr<RelationalGuard> guard = std::make_shared<NO_TENSOR_ALIASING>(
tensor_names, std::move(verbose_code_parts));
// Register the resetter on the root guard mananger, so that it can reset
// Register the resetter on the root guard manager, so that it can reset
// the newly added relational guard when the guard eval fails.
py::cast<GuardManager*>(guard_managers[0])
->get_root()
@ -5255,7 +5255,7 @@ void install_symbolic_shape_guard(
std::move(py_addr_keep_alive),
std::move(verbose_code_parts));
// Register the resetter on the root guard mananger, so that it can reset
// Register the resetter on the root guard manager, so that it can reset
// the newly added relational guard when the guard eval fails.
py::cast<GuardManager*>(guard_managers[0])
->get_root()
@ -6309,7 +6309,7 @@ PyObject* torch_c_dynamo_guards_init() {
self.add_permitted_leaf_guard(std::make_shared<NO_HASATTR>(
std::move(attr_name), std::move(verbose_code_parts)));
})
// Not permitted accesssors
// Not permitted accessors
.def("lambda_manager", &DictGuardManager::fail_on_get_child_manager)
.def("getitem_manager", &DictGuardManager::fail_on_get_child_manager)
.def("dict_getitem_manager", &DictGuardManager::fail_on_get_child_manager)

View File

@ -110,7 +110,7 @@ std::vector<ParameterMetadata> unpack_input_parameters(
}
if (stack[idx].isScalar()) {
// Beyond c10::Scalar, the floating value and interger value are also
// Beyond c10::Scalar, the floating value and integer value are also
// represented as Scalar.
inputs_metadata.emplace_back(stack[idx].toScalar(), arg_order);
} else if (stack[idx].isTensorList()) {
@ -528,7 +528,7 @@ std::string AOTIPythonKernelHolder::produce_aoti_kernel_lib(
auto kernel_lib_path = py::cast<std::string>(result);
TORCH_CHECK(
!kernel_lib_path.empty(),
"Failed to produce kernel libarary by using AOTI for ",
"Failed to produce kernel library by using AOTI for ",
c10::DeviceTypeName(device_.type()),
". Operator Name is ",
op.operator_name().name,

View File

@ -121,8 +121,8 @@ TORCH_API std::unordered_map<std::string, CreateAOTIModelRunnerFunc>&
getAOTIModelRunnerRegistry();
// To register a new external backend in AOTI one needs to create an instance of
// this struct. It is not thread-safe. Becase it is expected to be called during
// the initialization of the program.
// this struct. It is not thread-safe. Because it is expected to be called
// during the initialization of the program.
struct TORCH_API RegisterAOTIModelRunner{RegisterAOTIModelRunner(
const std::string& name,
CreateAOTIModelRunnerFunc create_aoti_model_runner_fn){

View File

@ -659,7 +659,7 @@ class AOTInductorModelBase {
AOTI_RUNTIME_CHECK(
reinterpret_cast<uint64_t*>(
self_mmap + weights_size - sizeof(uint64_t))[0] == magic_number,
"Weigths data seems corrupt");
"Weights data seems corrupt");
return self_mmap;
#endif
}
@ -707,7 +707,7 @@ class AOTInductorModelBase {
bool include_weights;
// Record if the model finishes an inference run so that its owning
// AOTModelContainer can re-use this instance.
// AOTModelContainer can reuse this instance.
#ifdef USE_CUDA
std::optional<cudaEvent_t> run_finished_;
#elif defined(USE_XPU)

View File

@ -18,7 +18,7 @@ namespace torch::aot_inductor {
// when model_container is created and no constants are being loaded or updated.
// (2) INITIALIZED state: This state get set whenever we load the constants into
// the buffer. This could be done by load_constants or update_constants_buffer.
// (3) FOLDED state: This state should transition from INITIALILZED after
// (3) FOLDED state: This state should transition from INITIALIZED after
// const_fold is being invoked.
enum class ConstantState : uint8_t { NONE, INITIALIZED, FOLDED, UNKNOWN };

View File

@ -872,7 +872,7 @@ void OSSProxyExecutor::call_function(
auto serialized_int_value = flatten_int_args[int_id++];
TORCH_CHECK(
returned_int_value == serialized_int_value,
"Expect returned int value to match the serialized int value, but got retured int value: ",
"Expect returned int value to match the serialized int value, but got returned int value: ",
returned_int_value,
" and serialized int value: ",
serialized_int_value);