mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
[ONNX] Remove legacy Dort (#158258)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158258 Approved by: https://github.com/justinchuby, https://github.com/malfet
This commit is contained in:
committed by
PyTorch MergeBot
parent
7afb834f93
commit
5606c516fd
@ -87,7 +87,6 @@ also be interested in reading our [development wiki](https://github.com/pytorch/
|
||||
onnx_dynamo
|
||||
onnx_ops
|
||||
onnx_verification
|
||||
onnx_dynamo_onnxruntime_backend
|
||||
onnx_torchscript
|
||||
```
|
||||
|
||||
|
@ -1,11 +0,0 @@
|
||||
# ONNX Backend for TorchDynamo
|
||||
|
||||
For a quick overview of `torch.compiler`, see {ref}`torch.compiler_overview`.
|
||||
|
||||
```{warning}
|
||||
The ONNX backend for torch.compile is a rapidly evolving beta technology.
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autofunction:: torch.onnx.is_onnxrt_backend_supported
|
||||
```
|
@ -56,8 +56,6 @@ Some of the most commonly used backends include:
|
||||
- CUDA graphs with AOT Autograd. `Read more <https://github.com/pytorch/torchdynamo/pull/757>`__
|
||||
* - ``torch.compile(m, backend="ipex")``
|
||||
- Uses IPEX on CPU. `Read more <https://github.com/intel/intel-extension-for-pytorch>`__
|
||||
* - ``torch.compile(m, backend="onnxrt")``
|
||||
- Uses ONNX Runtime for training on CPU/GPU. :doc:`Read more <onnx_dynamo_onnxruntime_backend>`
|
||||
```
|
||||
|
||||
**Inference-only backends**
|
||||
|
@ -8,7 +8,6 @@ import torch._dynamo
|
||||
import torch._dynamo.backends
|
||||
import torch._dynamo.test_case
|
||||
from torch._dynamo.backends.debugging import ExplainWithBackend
|
||||
from torch._dynamo.backends.onnxrt import has_onnxruntime
|
||||
from torch._dynamo.backends.tvm import has_tvm
|
||||
from torch._dynamo.testing import same
|
||||
from torch.fx._lazy_graph_module import _force_skip_lazy_graph_module
|
||||
@ -138,10 +137,6 @@ class TestOptimizations(torch._dynamo.test_case.TestCase):
|
||||
def test_aot_cudagraphs(self, device):
|
||||
self._check_backend_works("cudagraphs", device)
|
||||
|
||||
@unittest.skipIf(not has_onnxruntime(), "requires onnxruntime")
|
||||
def test_onnxrt(self, device):
|
||||
self._check_backend_works("onnxrt", device)
|
||||
|
||||
@unittest.skipIf(not has_tvm(), "requires tvm")
|
||||
def test_tvm(self, device):
|
||||
self._check_backend_works("tvm", device)
|
||||
|
@ -4,35 +4,38 @@
|
||||
# to the right people, please tag related GitHub issues with `module: onnx`.
|
||||
#
|
||||
# Maintainers' Github IDs: wschin, xadupre
|
||||
from torch.onnx._internal.onnxruntime import (
|
||||
is_onnxrt_backend_supported,
|
||||
torch_compile_backend,
|
||||
)
|
||||
# from torch.onnx._internal.onnxruntime import (
|
||||
# is_onnxrt_backend_supported,
|
||||
# torch_compile_backend,
|
||||
# )
|
||||
|
||||
from .registry import register_backend
|
||||
# from .registry import register_backend
|
||||
|
||||
"""
|
||||
Placeholder for onnxruntime backend for dynamo
|
||||
"""
|
||||
|
||||
# def has_onnxruntime():
|
||||
# # FIXME: update test/dynamo/test_backends.py to call is_onnxrt_backend_supported()
|
||||
# return is_onnxrt_backend_supported()
|
||||
|
||||
|
||||
def has_onnxruntime():
|
||||
# FIXME: update test/dynamo/test_backends.py to call is_onnxrt_backend_supported()
|
||||
return is_onnxrt_backend_supported()
|
||||
# if is_onnxrt_backend_supported():
|
||||
# register_backend(name="onnxrt", compiler_fn=torch_compile_backend)
|
||||
# else:
|
||||
|
||||
# def information_displaying_backend(*args, **kwargs):
|
||||
# raise ImportError(
|
||||
# "onnxrt is not registered as a backend. "
|
||||
# "Please make sure all dependencies such as "
|
||||
# "numpy, onnx, onnxscript, and onnxruntime-training are installed. "
|
||||
# "Suggested procedure to fix dependency problem:\n"
|
||||
# " (1) pip or conda install numpy onnx onnxscript onnxruntime-training.\n"
|
||||
# " (2) Open a new python terminal.\n"
|
||||
# " (3) Call the API `torch.onnx.is_onnxrt_backend_supported()`:\n"
|
||||
# " (4) If it returns `True`, then you can use `onnxrt` backend.\n"
|
||||
# " (5) If it returns `False`, please execute the package importing section in "
|
||||
# "torch/onnx/_internal/onnxruntime.py under pdb line-by-line to see which import fails."
|
||||
# )
|
||||
|
||||
if is_onnxrt_backend_supported():
|
||||
register_backend(name="onnxrt", compiler_fn=torch_compile_backend)
|
||||
else:
|
||||
|
||||
def information_displaying_backend(*args, **kwargs):
|
||||
raise ImportError(
|
||||
"onnxrt is not registered as a backend. "
|
||||
"Please make sure all dependencies such as "
|
||||
"numpy, onnx, onnxscript, and onnxruntime-training are installed. "
|
||||
"Suggested procedure to fix dependency problem:\n"
|
||||
" (1) pip or conda install numpy onnx onnxscript onnxruntime-training.\n"
|
||||
" (2) Open a new python terminal.\n"
|
||||
" (3) Call the API `torch.onnx.is_onnxrt_backend_supported()`:\n"
|
||||
" (4) If it returns `True`, then you can use `onnxrt` backend.\n"
|
||||
" (5) If it returns `False`, please execute the package importing section in "
|
||||
"torch/onnx/_internal/onnxruntime.py under pdb line-by-line to see which import fails."
|
||||
)
|
||||
|
||||
register_backend(name="onnxrt", compiler_fn=information_displaying_backend)
|
||||
# register_backend(name="onnxrt", compiler_fn=information_displaying_backend)
|
||||
|
@ -38,8 +38,6 @@ __all__ = [
|
||||
"OnnxExporterError",
|
||||
"ONNXProgram",
|
||||
"enable_fake_mode",
|
||||
# DORT / torch.compile
|
||||
"is_onnxrt_backend_supported",
|
||||
]
|
||||
|
||||
from typing import Any, Callable, TYPE_CHECKING
|
||||
@ -51,12 +49,6 @@ from torch._C._onnx import OperatorExportTypes, TensorProtoDataType, TrainingMod
|
||||
|
||||
from ._internal._exporter_legacy import enable_fake_mode
|
||||
from ._internal.exporter._onnx_program import ONNXProgram
|
||||
from ._internal.onnxruntime import (
|
||||
is_onnxrt_backend_supported,
|
||||
OrtBackend as _OrtBackend,
|
||||
OrtBackendOptions as _OrtBackendOptions,
|
||||
OrtExecutionProvider as _OrtExecutionProvider,
|
||||
)
|
||||
from ._type_utils import JitScalarType
|
||||
from .errors import OnnxExporterError
|
||||
from .utils import (
|
||||
@ -98,10 +90,7 @@ if TYPE_CHECKING:
|
||||
JitScalarType.__module__ = "torch.onnx"
|
||||
ONNXProgram.__module__ = "torch.onnx"
|
||||
OnnxExporterError.__module__ = "torch.onnx"
|
||||
_OrtBackend.__module__ = "torch.onnx"
|
||||
_OrtBackendOptions.__module__ = "torch.onnx"
|
||||
enable_fake_mode.__module__ = "torch.onnx"
|
||||
is_onnxrt_backend_supported.__module__ = "torch.onnx"
|
||||
|
||||
producer_name = "pytorch"
|
||||
producer_version = _C_onnx.PRODUCER_VERSION
|
||||
|
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user