mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Revert "[5/N][Easy] fix typo for usort
config in pyproject.toml
(kown
-> known
): sort torch (#127126)"
This reverts commit 7763c83af67eebfdd5185dbe6ce15ece2b992a0f. Reverted https://github.com/pytorch/pytorch/pull/127126 on behalf of https://github.com/XuehaiPan due to Broken CI ([comment](https://github.com/pytorch/pytorch/pull/127126#issuecomment-2133044286))
This commit is contained in:
@ -1,6 +1,5 @@
|
||||
from torchvision import models
|
||||
|
||||
import torch
|
||||
from torchvision import models
|
||||
|
||||
print(torch.version.__version__)
|
||||
|
||||
|
@ -4,11 +4,10 @@ MobileNetV2 TorchScript model, and dumps root ops used by the model for custom
|
||||
build script to create a tailored build which only contains these used ops.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
from torchvision import models
|
||||
|
||||
import torch
|
||||
|
||||
# Download and trace the model.
|
||||
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1)
|
||||
model.eval()
|
||||
|
@ -18,12 +18,11 @@ import sys
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import torchvision
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torchvision
|
||||
|
||||
|
||||
def allgather_object(obj):
|
||||
|
@ -3,10 +3,10 @@ import math
|
||||
import os
|
||||
import time
|
||||
|
||||
from benchmark_dataset import BenchmarkLMDataset, collate_sentences_lm
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from benchmark_dataset import BenchmarkLMDataset, collate_sentences_lm
|
||||
from torch.distributed import rpc
|
||||
|
||||
from torch.distributed.pipeline.sync import Pipe
|
||||
|
@ -3,10 +3,18 @@ import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.distributed as c10d
|
||||
import torch.distributed.rpc as rpc
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from data import data_map
|
||||
from metrics.ProcessedMetricsPrinter import ProcessedMetricsPrinter
|
||||
from models import model_map
|
||||
from server import server_map
|
||||
from torch.distributed.rpc import TensorPipeRpcBackendOptions
|
||||
from torch.futures import wait_all
|
||||
from torch.utils.data import DataLoader
|
||||
from trainer import (
|
||||
criterion_map,
|
||||
ddp_hook_map,
|
||||
@ -17,14 +25,6 @@ from trainer import (
|
||||
trainer_map,
|
||||
)
|
||||
|
||||
import torch
|
||||
import torch.distributed as c10d
|
||||
import torch.distributed.rpc as rpc
|
||||
import torch.multiprocessing as mp
|
||||
from torch.distributed.rpc import TensorPipeRpcBackendOptions
|
||||
from torch.futures import wait_all
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
def get_name(rank, args):
|
||||
r"""
|
||||
|
@ -3,12 +3,12 @@ import threading
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from metrics.MetricsLogger import MetricsLogger
|
||||
from utils import sparse_rpc_format_to_tensor, sparse_tensor_to_rpc_format
|
||||
|
||||
import torch
|
||||
import torch.distributed.rpc as rpc
|
||||
|
||||
from metrics.MetricsLogger import MetricsLogger
|
||||
from utils import sparse_rpc_format_to_tensor, sparse_tensor_to_rpc_format
|
||||
|
||||
|
||||
class ParameterServerBase(ABC):
|
||||
PARAMETER_SERVER_BATCH_METRIC = "parameter_server_batch_metric"
|
||||
|
@ -1,7 +1,6 @@
|
||||
from utils import process_bucket_with_remote_server
|
||||
|
||||
import torch
|
||||
import torch.distributed as c10d
|
||||
from utils import process_bucket_with_remote_server
|
||||
|
||||
|
||||
def allreduce_hook(state, bucket):
|
||||
|
@ -2,10 +2,10 @@ import functools
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from metrics.MetricsLogger import MetricsLogger
|
||||
|
||||
import torch
|
||||
|
||||
from metrics.MetricsLogger import MetricsLogger
|
||||
|
||||
|
||||
class TrainerBase(ABC):
|
||||
BATCH_LEVEL_METRIC = "batch_level_metric"
|
||||
|
@ -2,12 +2,12 @@ import time
|
||||
|
||||
import numpy as np
|
||||
|
||||
from agent import AgentBase
|
||||
from observer import ObserverBase
|
||||
|
||||
import torch
|
||||
import torch.distributed.rpc as rpc
|
||||
|
||||
from agent import AgentBase
|
||||
from observer import ObserverBase
|
||||
|
||||
COORDINATOR_NAME = "coordinator"
|
||||
AGENT_NAME = "agent"
|
||||
OBSERVER_NAME = "observer{}"
|
||||
|
@ -4,11 +4,11 @@ import json
|
||||
import os
|
||||
import time
|
||||
|
||||
from coordinator import CoordinatorBase
|
||||
|
||||
import torch.distributed.rpc as rpc
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from coordinator import CoordinatorBase
|
||||
|
||||
COORDINATOR_NAME = "coordinator"
|
||||
AGENT_NAME = "agent"
|
||||
OBSERVER_NAME = "observer{}"
|
||||
|
@ -1,10 +1,10 @@
|
||||
import random
|
||||
import time
|
||||
|
||||
from agent import AgentBase
|
||||
|
||||
import torch
|
||||
import torch.distributed.rpc as rpc
|
||||
|
||||
from agent import AgentBase
|
||||
from torch.distributed.rpc import rpc_sync
|
||||
|
||||
|
||||
|
@ -36,21 +36,20 @@ from typing import (
|
||||
Type,
|
||||
TYPE_CHECKING,
|
||||
)
|
||||
|
||||
from typing_extensions import Self
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import psutil
|
||||
from scipy.stats import gmean, ttest_ind
|
||||
from tqdm.auto import tqdm, trange
|
||||
|
||||
import torch
|
||||
import torch._dynamo
|
||||
import torch._dynamo.utils
|
||||
import torch._export
|
||||
import torch.distributed
|
||||
import torch.multiprocessing as mp
|
||||
from scipy.stats import gmean, ttest_ind
|
||||
from torch._C import _has_cuda as HAS_CUDA, _has_xpu as HAS_XPU
|
||||
from torch._dynamo.profiler import fx_insert_profiling, Profiler
|
||||
from torch._dynamo.testing import (
|
||||
@ -60,6 +59,8 @@ from torch._dynamo.testing import (
|
||||
same,
|
||||
)
|
||||
|
||||
from tqdm.auto import tqdm, trange
|
||||
|
||||
try:
|
||||
from torch._dynamo.utils import (
|
||||
clone_inputs,
|
||||
@ -73,14 +74,15 @@ except ImportError:
|
||||
graph_break_reasons,
|
||||
maybe_enable_compiled_autograd,
|
||||
)
|
||||
|
||||
import torch._functorch.config
|
||||
from torch._functorch.aot_autograd import set_model_name
|
||||
from torch._inductor import config as inductor_config, metrics
|
||||
from torch._subclasses.fake_tensor import FakeTensorMode
|
||||
|
||||
from torch.utils import _pytree as pytree
|
||||
from torch.utils._pytree import tree_map, tree_map_only
|
||||
|
||||
|
||||
try:
|
||||
import torch_xla
|
||||
import torch_xla.core.xla_model as xm
|
||||
@ -2341,16 +2343,16 @@ class BenchmarkRunner:
|
||||
|
||||
def get_fsdp_auto_wrap_policy(self, model_name: str):
|
||||
from diffusers.models.transformer_2d import Transformer2DModel
|
||||
from torchbenchmark.models.nanogpt.model import Block
|
||||
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
||||
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer
|
||||
|
||||
from torch.distributed.fsdp.wrap import (
|
||||
ModuleWrapPolicy,
|
||||
size_based_auto_wrap_policy,
|
||||
)
|
||||
from torchbenchmark.models.nanogpt.model import Block
|
||||
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
||||
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer
|
||||
|
||||
# handcrafted wrap policy
|
||||
MODEL_FSDP_WRAP = {
|
||||
|
@ -7,9 +7,8 @@ import subprocess
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
from common import BenchmarkRunner, download_retry_decorator, main, reset_rng_state
|
||||
|
||||
import torch
|
||||
from common import BenchmarkRunner, download_retry_decorator, main, reset_rng_state
|
||||
|
||||
from torch._dynamo.testing import collect_results
|
||||
from torch._dynamo.utils import clone_inputs
|
||||
|
@ -1,11 +1,10 @@
|
||||
# flake8: noqa
|
||||
import triton
|
||||
from prettytable import PrettyTable
|
||||
|
||||
import torch
|
||||
|
||||
import torch._dynamo
|
||||
import torch._inductor.config
|
||||
import triton
|
||||
from prettytable import PrettyTable
|
||||
|
||||
# torch._inductor.config.debug = True
|
||||
torch._inductor.config.triton.dense_indexing = True
|
||||
|
@ -1,10 +1,9 @@
|
||||
from benchmark_helper import time_with_torch_timer
|
||||
|
||||
import torch
|
||||
|
||||
import torch._dynamo
|
||||
import torch._dynamo.config
|
||||
import torch._inductor.config as config
|
||||
from benchmark_helper import time_with_torch_timer
|
||||
|
||||
|
||||
@torch._dynamo.optimize("inductor", nopython=True)
|
||||
|
@ -1,9 +1,8 @@
|
||||
import itertools
|
||||
|
||||
from benchmark_helper import time_with_torch_timer
|
||||
|
||||
import torch
|
||||
import torch._dynamo
|
||||
from benchmark_helper import time_with_torch_timer
|
||||
|
||||
|
||||
@torch._dynamo.optimize("inductor", nopython=True)
|
||||
|
@ -1,11 +1,10 @@
|
||||
import triton
|
||||
from benchmark_helper import time_with_torch_timer
|
||||
|
||||
import torch
|
||||
|
||||
import torch._dynamo
|
||||
import torch._dynamo.config
|
||||
import torch._inductor.config as config
|
||||
import triton
|
||||
from benchmark_helper import time_with_torch_timer
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to True.
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
@ -1,9 +1,8 @@
|
||||
from benchmark_helper import time_with_torch_timer
|
||||
|
||||
import torch
|
||||
|
||||
import torch._dynamo
|
||||
import torch._inductor.config as inductor_config
|
||||
from benchmark_helper import time_with_torch_timer
|
||||
|
||||
inductor_config.triton.mm = "triton"
|
||||
|
||||
|
@ -5,7 +5,6 @@ import sys
|
||||
|
||||
import numpy as np
|
||||
import tabulate
|
||||
|
||||
import torch
|
||||
|
||||
import torch._inductor
|
||||
|
@ -1,9 +1,8 @@
|
||||
#!/usr/bin/env python3
|
||||
import click
|
||||
import numpy as np
|
||||
from operator_inp_utils import OperatorInputsLoader
|
||||
|
||||
import torch
|
||||
from operator_inp_utils import OperatorInputsLoader
|
||||
|
||||
from torch._dynamo.backends.cudagraphs import cudagraphs_inner
|
||||
from torch._dynamo.testing import same
|
||||
|
@ -47,13 +47,12 @@ import matplotlib.pyplot as plt
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from matplotlib import rcParams
|
||||
from scipy.stats import gmean
|
||||
from tabulate import tabulate
|
||||
|
||||
import torch
|
||||
|
||||
import torch._dynamo
|
||||
from matplotlib import rcParams
|
||||
from scipy.stats import gmean
|
||||
from tabulate import tabulate
|
||||
|
||||
rcParams.update({"figure.autolayout": True})
|
||||
plt.rc("axes", axisbelow=True)
|
||||
|
@ -7,9 +7,8 @@ import subprocess
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
from common import BenchmarkRunner, download_retry_decorator, main
|
||||
|
||||
import torch
|
||||
from common import BenchmarkRunner, download_retry_decorator, main
|
||||
|
||||
from torch._dynamo.testing import collect_results, reduce_to_scalar_loss
|
||||
from torch._dynamo.utils import clone_inputs
|
||||
|
@ -10,9 +10,8 @@ import warnings
|
||||
from collections import namedtuple
|
||||
from os.path import abspath, exists
|
||||
|
||||
import yaml
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
try:
|
||||
from .common import BenchmarkRunner, main
|
||||
|
@ -5,13 +5,12 @@ import sys
|
||||
import time
|
||||
from datetime import timedelta
|
||||
|
||||
from datasets import load_dataset, load_metric
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||
|
||||
import torch
|
||||
|
||||
import torch._dynamo
|
||||
from datasets import load_dataset, load_metric
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
|
@ -1,9 +1,8 @@
|
||||
from collections import namedtuple
|
||||
from functools import partial
|
||||
|
||||
import torchvision.models as cnn
|
||||
|
||||
import torch
|
||||
import torchvision.models as cnn
|
||||
|
||||
from .factory import (
|
||||
dropoutlstm_creator,
|
||||
|
@ -1,5 +1,4 @@
|
||||
import pytest
|
||||
|
||||
import torch
|
||||
|
||||
from .fuser import set_fuser
|
||||
|
@ -1,6 +1,5 @@
|
||||
from utils import NUM_LOOP_ITERS
|
||||
|
||||
import torch
|
||||
from utils import NUM_LOOP_ITERS
|
||||
|
||||
|
||||
def add_tensors_loop(x, y):
|
||||
|
@ -1,10 +1,10 @@
|
||||
import torch
|
||||
|
||||
import torchaudio_models as models
|
||||
from torch import nn, Tensor
|
||||
|
||||
from utils import check_for_functorch, extract_weights, GetterReturnType, load_weights
|
||||
|
||||
import torch
|
||||
from torch import nn, Tensor
|
||||
|
||||
|
||||
has_functorch = check_for_functorch()
|
||||
|
||||
|
@ -1,9 +1,9 @@
|
||||
from utils import GetterReturnType
|
||||
|
||||
import torch
|
||||
import torch.distributions as dist
|
||||
from torch import Tensor
|
||||
|
||||
from utils import GetterReturnType
|
||||
|
||||
|
||||
def get_simple_regression(device: torch.device) -> GetterReturnType:
|
||||
N = 10
|
||||
|
@ -1,12 +1,11 @@
|
||||
from typing import cast
|
||||
|
||||
import torch
|
||||
import torchvision_models as models
|
||||
from torch import Tensor
|
||||
|
||||
from utils import check_for_functorch, extract_weights, GetterReturnType, load_weights
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
has_functorch = check_for_functorch()
|
||||
|
||||
|
||||
|
@ -4,7 +4,6 @@ import sys
|
||||
import time
|
||||
|
||||
import click
|
||||
|
||||
import torch
|
||||
|
||||
torch.set_num_threads(1)
|
||||
|
@ -6,6 +6,8 @@ import os
|
||||
import time
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch._inductor.config
|
||||
from mixtral_moe_model import Transformer as MixtralMoE
|
||||
from mixtral_moe_quantize import (
|
||||
WeightOnlyInt8QuantHandler as MixtralMoEWeightOnlyInt8QuantHandler,
|
||||
@ -13,9 +15,6 @@ from mixtral_moe_quantize import (
|
||||
from model import Transformer as LLaMA
|
||||
from quantize import WeightOnlyInt8QuantHandler as LLaMAWeightOnlyInt8QuantHandler
|
||||
|
||||
import torch
|
||||
import torch._inductor.config
|
||||
|
||||
torch._inductor.config.coordinate_descent_tuning = True
|
||||
torch._inductor.config.triton.unique_kernel_names = True
|
||||
torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future
|
||||
|
@ -1,10 +1,10 @@
|
||||
# flake8: noqa: E266, C417, B950
|
||||
from mixtral_moe_model import ConditionalFeedForward
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from mixtral_moe_model import ConditionalFeedForward
|
||||
|
||||
##### Quantization Primitives ######
|
||||
|
||||
|
||||
|
@ -187,9 +187,8 @@ class BackendWorker:
|
||||
def _setup(self):
|
||||
import time
|
||||
|
||||
from torchvision.models.resnet import BasicBlock, ResNet
|
||||
|
||||
import torch
|
||||
from torchvision.models.resnet import BasicBlock, ResNet
|
||||
|
||||
# Create ResNet18 on meta device
|
||||
with torch.device("meta"):
|
||||
|
@ -4,11 +4,11 @@ import shutil
|
||||
import textwrap
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from torch.utils.benchmark.utils.common import _make_temp_dir
|
||||
|
||||
from core.api import GroupedBenchmark, TimerArgs
|
||||
from core.types import Definition, FlatIntermediateDefinition, Label
|
||||
|
||||
from torch.utils.benchmark.utils.common import _make_temp_dir
|
||||
|
||||
|
||||
_TEMPDIR: Optional[str] = None
|
||||
|
||||
|
@ -7,7 +7,6 @@ from collections import namedtuple
|
||||
|
||||
import benchmark_utils
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
|
||||
# needs to be imported after torch
|
||||
|
@ -2,7 +2,6 @@ import json
|
||||
import time
|
||||
|
||||
import benchmark_cpp_extension # noqa: F401
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
|
@ -1,7 +1,6 @@
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
|
||||
"""Microbenchmarks for Tensor repeat operator. Supports PyTorch."""
|
||||
|
@ -1,5 +1,4 @@
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
|
||||
intraop_bench_configs = op_bench.config_list(
|
||||
|
@ -1,5 +1,4 @@
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
|
||||
"""Microbenchmarks for element-wise Add operator. Supports both Caffe2/PyTorch."""
|
||||
|
@ -1,5 +1,4 @@
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch."""
|
||||
|
||||
# Configs for PT add operator
|
||||
|
@ -1,9 +1,10 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from torch.ao import pruning
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for sparsifier."""
|
||||
|
||||
|
@ -1,9 +1,9 @@
|
||||
from typing import List
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for as_strided operator"""
|
||||
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for batchnorm operator."""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for binary operators."""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch."""
|
||||
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for Cat operator"""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for channel_shuffle operator."""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for Chunk operator"""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for ClipRanges operator."""
|
||||
torch.ops.load_library("//caffe2/torch/fb/sparsenn:sparsenn_operators")
|
||||
|
@ -1,8 +1,9 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from pt import configs
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
"""
|
||||
Microbenchmarks for Conv1d and ConvTranspose1d operators.
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for diag operator"""
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
import numpy
|
||||
import torch
|
||||
from pt import configs
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
"""Embedding and EmbeddingBag Operator Benchmark"""
|
||||
|
||||
|
@ -1,8 +1,9 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
from torch.testing._internal.common_device_type import get_all_device_types
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""Microbenchmark for Fill_ operator."""
|
||||
|
||||
fill_short_configs = op_bench.config_list(
|
||||
|
@ -1,7 +1,7 @@
|
||||
import numpy
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
|
||||
"""Microbenchmarks for gather operator."""
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""
|
||||
Microbenchmarks for the gelu operators.
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for groupnorm operator."""
|
||||
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""
|
||||
Microbenchmarks for the hardsigmoid operator.
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""
|
||||
Microbenchmarks for the hardswish operators.
|
||||
|
@ -1,7 +1,7 @@
|
||||
import numpy
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
|
||||
"""Microbenchmarks for index_select operator."""
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for instancenorm operator."""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""Microbenchmarks for interpolate operator."""
|
||||
|
||||
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for layernorm operator."""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""Microbenchmarks for linear_prepack_fp16_ operator. Supports both Caffe2/PyTorch."""
|
||||
|
||||
# Configs for PT linear_prepack_fp16 operator
|
||||
|
@ -1,8 +1,9 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from pt import configs
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
"""Microbenchmarks for Linear operator."""
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""Microbenchmarks for linear_unpack_fp16_ operator. Supports both Caffe2/PyTorch."""
|
||||
|
||||
# Configs for PT linear_unpack_fp16 operator
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""Microbenchmarks for MatMul operator"""
|
||||
|
||||
# Configs for PT Matmul operator
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""
|
||||
Microbenchmarks for batch matrix mult with einsum and torch.bmm.
|
||||
"""
|
||||
|
@ -1,9 +1,9 @@
|
||||
import math
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for torch.nan_to_num / nan_to_num_ operators"""
|
||||
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""
|
||||
Microbenchmarks for MaxPool1d and AvgPool1d operators.
|
||||
"""
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.ao.nn.quantized.functional as qF
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
r"""Microbenchmarks for the quantized activations."""
|
||||
|
||||
qactivation_long_configs = op_bench.cross_product_configs(
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
from torch._ops import ops
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
qarithmetic_binary_configs = op_bench.cross_product_configs(
|
||||
N=(2, 8, 64, 512),
|
||||
dtype=(torch.quint8, torch.qint8, torch.qint32),
|
||||
|
@ -1,11 +1,11 @@
|
||||
import numpy
|
||||
from pt import configs
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.ao.nn.qat as nnqat
|
||||
from pt import configs
|
||||
from torch.ao.quantization import default_embedding_qat_qconfig
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""
|
||||
Microbenchmarks for QAT Embedding + EmbeddingBag operators.
|
||||
"""
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for quantized batchnorm operator."""
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
from typing import List
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
import torch.ao.nn.quantized as nnq
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for quantized Cat operator"""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
qcomparators_configs = op_bench.cross_product_configs(
|
||||
N=(8, 64),
|
||||
dtype=(torch.quint8, torch.qint8, torch.qint32),
|
||||
|
@ -1,8 +1,9 @@
|
||||
import torch
|
||||
import torch.ao.nn.quantized as nnq
|
||||
|
||||
from pt import configs
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.ao.nn.quantized as nnq
|
||||
|
||||
"""
|
||||
Microbenchmarks for qConv operators.
|
||||
|
@ -1,12 +1,12 @@
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
from torch.testing._internal.common_quantization import lengths_to_offsets
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
torch.ops.load_library("//caffe2/torch/fb/sparsenn:sparsenn_operators")
|
||||
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
embeddingbag_conversion_short_configs = op_bench.cross_product_configs(
|
||||
num_embeddings=(80,), embedding_dim=(128, 256, 512), tags=("short",)
|
||||
)
|
||||
|
@ -1,9 +1,9 @@
|
||||
import numpy
|
||||
import torch
|
||||
import torch.ao.nn.quantized as nnq
|
||||
from pt import configs
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.ao.nn.quantized as nnq
|
||||
|
||||
"""
|
||||
Microbenchmarks for qEmbeddingBag operators.
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for quantized groupnorm operator."""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for quantized instancenorm operator."""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""Microbenchmarks for the quantized interpolate op.
|
||||
|
||||
Note: We are not benchmarking `upsample` as it is being deprecated, and calls
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for quantized layernorm operator."""
|
||||
|
||||
|
@ -1,10 +1,11 @@
|
||||
from pt import configs
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.ao.nn.quantized as nnq
|
||||
import torch.ao.nn.quantized.dynamic as nnqd
|
||||
|
||||
from pt import configs
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""
|
||||
Microbenchmarks for Quantized Linear operators.
|
||||
"""
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.ao.quantization.observer as obs
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
qobserver_short_configs_dict = {
|
||||
"attr_names": ("C", "M", "N", "dtype", "device"),
|
||||
"attrs": (
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
# 2D pooling will have input matrix of rank 3 or 4
|
||||
qpool2d_long_configs = op_bench.config_list(
|
||||
attrs=(
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""
|
||||
Microbenchmarks for RNNs.
|
||||
"""
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
# Configs for pointwise and reduction unary ops
|
||||
qmethods_configs_short = op_bench.config_list(
|
||||
attr_names=["M", "N"],
|
||||
|
@ -1,9 +1,10 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.ao.nn.quantized as nnq
|
||||
import torch.ao.quantization as tq
|
||||
import torch.nn as nn
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""Microbenchmarks for general quantization operations."""
|
||||
|
||||
# mode is used to show the direction of the benchmark:
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for quantized unary operators (point-wise and reduction)."""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for remainder operators."""
|
||||
|
||||
|
@ -1,7 +1,8 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""
|
||||
Microbenchmarks for the softmax operators.
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for Split operator"""
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
|
||||
"""Microbenchmarks for Stack operator"""
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
import operator_benchmark as op_bench
|
||||
import torch
|
||||
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
"""Microbenchmarks for sum reduction operator."""
|
||||
|
||||
# Configs for PT add operator
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user