mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[BE][CI][Easy] bump ruff
to 0.9.0: long statements in docstrings (#146509)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146509 Approved by: https://github.com/justinchuby, https://github.com/Skylion007
This commit is contained in:
committed by
PyTorch MergeBot
parent
9605c5063b
commit
52f6d4aa30
@ -666,7 +666,11 @@ def _load_local(hubconf_dir, model, *args, **kwargs):
|
||||
Example:
|
||||
>>> # xdoctest: +SKIP("stub local path")
|
||||
>>> path = "/some/local/path/pytorch/vision"
|
||||
>>> model = _load_local(path, "resnet50", weights="ResNet50_Weights.IMAGENET1K_V1")
|
||||
>>> model = _load_local(
|
||||
... path,
|
||||
... "resnet50",
|
||||
... weights="ResNet50_Weights.IMAGENET1K_V1",
|
||||
... )
|
||||
"""
|
||||
with _add_to_sys_path(hubconf_dir):
|
||||
hubconf_path = os.path.join(hubconf_dir, MODULE_HUBCONF)
|
||||
|
@ -153,7 +153,10 @@ class FXSymbolicTracer(_exporter_legacy.FXGraphExtractor):
|
||||
return out
|
||||
|
||||
|
||||
f = fx.symbolic_trace(f, concrete_args={"x": {"a": fx.PH, "b": fx.PH, "c": fx.PH}})
|
||||
f = fx.symbolic_trace(
|
||||
f,
|
||||
concrete_args={"x": {"a": fx.PH, "b": fx.PH, "c": fx.PH}},
|
||||
)
|
||||
assert f({"a": 1, "b": 2, "c": 4}) == 7
|
||||
"""
|
||||
|
||||
|
@ -822,7 +822,10 @@ class Modularize(_pass.Transform):
|
||||
... )
|
||||
>>> gm.print_readable()
|
||||
|
||||
>>> gm = passes.Modularize(infra.DiagnosticContext("test_context", "1.0"), gm).run()
|
||||
>>> gm = passes.Modularize(
|
||||
... infra.DiagnosticContext("test_context", "1.0"),
|
||||
... gm,
|
||||
... ).run()
|
||||
>>> gm.print_readable()
|
||||
|
||||
"""
|
||||
|
@ -1322,10 +1322,16 @@ def load(
|
||||
>>> # xdoctest: +SKIP("undefined filepaths")
|
||||
>>> torch.load("tensors.pt", weights_only=True)
|
||||
# Load all tensors onto the CPU
|
||||
>>> torch.load("tensors.pt", map_location=torch.device("cpu"), weights_only=True)
|
||||
>>> torch.load(
|
||||
... "tensors.pt",
|
||||
... map_location=torch.device("cpu"),
|
||||
... weights_only=True,
|
||||
... )
|
||||
# Load all tensors onto the CPU, using a function
|
||||
>>> torch.load(
|
||||
... "tensors.pt", map_location=lambda storage, loc: storage, weights_only=True
|
||||
... "tensors.pt",
|
||||
... map_location=lambda storage, loc: storage,
|
||||
... weights_only=True,
|
||||
... )
|
||||
# Load all tensors onto GPU 1
|
||||
>>> torch.load(
|
||||
@ -1334,7 +1340,11 @@ def load(
|
||||
... weights_only=True,
|
||||
... ) # type: ignore[attr-defined]
|
||||
# Map tensors from GPU 1 to GPU 0
|
||||
>>> torch.load("tensors.pt", map_location={"cuda:1": "cuda:0"}, weights_only=True)
|
||||
>>> torch.load(
|
||||
... "tensors.pt",
|
||||
... map_location={"cuda:1": "cuda:0"},
|
||||
... weights_only=True,
|
||||
... )
|
||||
# Load tensor from io.BytesIO object
|
||||
# Loading from a buffer setting weights_only=False, warning this can be unsafe
|
||||
>>> with open("tensor.pt", "rb") as f:
|
||||
|
Reference in New Issue
Block a user