mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
DOC: Convert to markdown: torch.overrides.rst, type_info.rst, utils.rst, xpu.rst (#155088)
Fixes #155041 Pull Request resolved: https://github.com/pytorch/pytorch/pull/155088 Approved by: https://github.com/svekars Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
This commit is contained in:
committed by
PyTorch MergeBot
parent
067fd0b3ab
commit
4f5b34427b
@ -1,30 +1,49 @@
|
|||||||
|
```{eval-rst}
|
||||||
.. currentmodule:: torch.overrides
|
.. currentmodule:: torch.overrides
|
||||||
|
```
|
||||||
|
|
||||||
torch.overrides
|
# torch.overrides
|
||||||
---------------
|
```{eval-rst}
|
||||||
.. py:module:: torch.overrides
|
.. py:module:: torch.overrides
|
||||||
|
```
|
||||||
|
|
||||||
This module exposes various helper functions for the ``__torch_function__``
|
This module exposes various helper functions for the ``__torch_function__``
|
||||||
protocol. See :ref:`extending-torch-python` for more details on the
|
protocol. See {ref}`extending-torch-python` for more details on the
|
||||||
``__torch_function__`` protocol.
|
``__torch_function__`` protocol.
|
||||||
|
|
||||||
Functions
|
## Functions
|
||||||
~~~~~~~~~
|
```{eval-rst}
|
||||||
|
|
||||||
.. autofunction:: get_ignored_functions
|
.. autofunction:: get_ignored_functions
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. autofunction:: get_overridable_functions
|
.. autofunction:: get_overridable_functions
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. autofunction:: resolve_name
|
.. autofunction:: resolve_name
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. autofunction:: get_testing_overrides
|
.. autofunction:: get_testing_overrides
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. autofunction:: handle_torch_function
|
.. autofunction:: handle_torch_function
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. autofunction:: has_torch_function
|
.. autofunction:: has_torch_function
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. autofunction:: is_tensor_like
|
.. autofunction:: is_tensor_like
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. autofunction:: is_tensor_method_or_property
|
.. autofunction:: is_tensor_method_or_property
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. autofunction:: wrap_torch_function
|
.. autofunction:: wrap_torch_function
|
||||||
|
```
|
||||||
61
docs/source/type_info.md
Normal file
61
docs/source/type_info.md
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
```{eval-rst}
|
||||||
|
.. currentmodule:: torch
|
||||||
|
```
|
||||||
|
|
||||||
|
(type-info-doc)=
|
||||||
|
# Type Info
|
||||||
|
|
||||||
|
The numerical properties of a {class}`torch.dtype` can be accessed through either the {class}`torch.finfo` or the {class}`torch.iinfo`.
|
||||||
|
|
||||||
|
(finfo-doc)=
|
||||||
|
## torch.finfo
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
|
.. class:: torch.finfo
|
||||||
|
```
|
||||||
|
|
||||||
|
A {class}`torch.finfo` is an object that represents the numerical properties of a floating point
|
||||||
|
{class}`torch.dtype`, (i.e. ``torch.float32``, ``torch.float64``, ``torch.float16``, and ``torch.bfloat16``).
|
||||||
|
This is similar to [numpy.finfo](https://numpy.org/doc/stable/reference/generated/numpy.finfo.html).
|
||||||
|
|
||||||
|
A {class}`torch.finfo` provides the following attributes:
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :-------------- | :---- | :------------------------------------------------------------------------- |
|
||||||
|
| bits | int | The number of bits occupied by the type. |
|
||||||
|
| eps | float | The smallest representable number such that ``1.0 + eps != 1.0``. |
|
||||||
|
| max | float | The largest representable number. |
|
||||||
|
| min | float | The smallest representable number (typically ``-max``). |
|
||||||
|
| tiny | float | The smallest positive normal number. Equivalent to ``smallest_normal``. |
|
||||||
|
| smallest_normal | float | The smallest positive normal number. See notes. |
|
||||||
|
| resolution | float | The approximate decimal resolution of this type, i.e., ``10**-precision``. |
|
||||||
|
|
||||||
|
```{note}
|
||||||
|
The constructor of {class}`torch.finfo` can be called without argument,
|
||||||
|
in which case the class is created for the pytorch default dtype (as returned by {func}`torch.get_default_dtype`).
|
||||||
|
```
|
||||||
|
|
||||||
|
```{note}
|
||||||
|
`smallest_normal` returns the smallest *normal* number, but there are smaller
|
||||||
|
subnormal numbers. See https://en.wikipedia.org/wiki/Denormal_number
|
||||||
|
for more information.
|
||||||
|
```
|
||||||
|
|
||||||
|
(iinfo-doc)=
|
||||||
|
## torch.iinfo
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
|
.. class:: torch.iinfo
|
||||||
|
```
|
||||||
|
|
||||||
|
A {class}`torch.iinfo` is an object that represents the numerical properties of a integer
|
||||||
|
{class}`torch.dtype` (i.e. ``torch.uint8``, ``torch.int8``, ``torch.int16``, ``torch.int32``, and ``torch.int64``).
|
||||||
|
This is similar to [numpy.iinfo](https://numpy.org/doc/stable/reference/generated/numpy.iinfo.html).
|
||||||
|
|
||||||
|
A {class}`torch.iinfo` provides the following attributes:
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :--- | :--- | :--------------------------------------- |
|
||||||
|
| bits | int | The number of bits occupied by the type. |
|
||||||
|
| max | int | The largest representable number. |
|
||||||
|
| min | int | The smallest representable number. |
|
||||||
@ -1,62 +0,0 @@
|
|||||||
.. currentmodule:: torch
|
|
||||||
|
|
||||||
.. _type-info-doc:
|
|
||||||
|
|
||||||
Type Info
|
|
||||||
=========
|
|
||||||
|
|
||||||
The numerical properties of a :class:`torch.dtype` can be accessed through either the :class:`torch.finfo` or the :class:`torch.iinfo`.
|
|
||||||
|
|
||||||
.. _finfo-doc:
|
|
||||||
|
|
||||||
torch.finfo
|
|
||||||
-----------
|
|
||||||
|
|
||||||
.. class:: torch.finfo
|
|
||||||
|
|
||||||
A :class:`torch.finfo` is an object that represents the numerical properties of a floating point
|
|
||||||
:class:`torch.dtype`, (i.e. ``torch.float32``, ``torch.float64``, ``torch.float16``, and ``torch.bfloat16``). This is similar to `numpy.finfo <https://numpy.org/doc/stable/reference/generated/numpy.finfo.html>`_.
|
|
||||||
|
|
||||||
A :class:`torch.finfo` provides the following attributes:
|
|
||||||
|
|
||||||
=============== ===== ==========================================================================
|
|
||||||
Name Type Description
|
|
||||||
=============== ===== ==========================================================================
|
|
||||||
bits int The number of bits occupied by the type.
|
|
||||||
eps float The smallest representable number such that ``1.0 + eps != 1.0``.
|
|
||||||
max float The largest representable number.
|
|
||||||
min float The smallest representable number (typically ``-max``).
|
|
||||||
tiny float The smallest positive normal number. Equivalent to ``smallest_normal``.
|
|
||||||
smallest_normal float The smallest positive normal number. See notes.
|
|
||||||
resolution float The approximate decimal resolution of this type, i.e., ``10**-precision``.
|
|
||||||
=============== ===== ==========================================================================
|
|
||||||
|
|
||||||
.. note::
|
|
||||||
The constructor of :class:`torch.finfo` can be called without argument, in which case the class is created for the pytorch default dtype (as returned by :func:`torch.get_default_dtype`).
|
|
||||||
|
|
||||||
.. note::
|
|
||||||
`smallest_normal` returns the smallest *normal* number, but there are smaller
|
|
||||||
subnormal numbers. See https://en.wikipedia.org/wiki/Denormal_number
|
|
||||||
for more information.
|
|
||||||
|
|
||||||
|
|
||||||
.. _iinfo-doc:
|
|
||||||
|
|
||||||
torch.iinfo
|
|
||||||
------------
|
|
||||||
|
|
||||||
.. class:: torch.iinfo
|
|
||||||
|
|
||||||
|
|
||||||
A :class:`torch.iinfo` is an object that represents the numerical properties of a integer
|
|
||||||
:class:`torch.dtype` (i.e. ``torch.uint8``, ``torch.int8``, ``torch.int16``, ``torch.int32``, and ``torch.int64``). This is similar to `numpy.iinfo <https://numpy.org/doc/stable/reference/generated/numpy.iinfo.html>`_.
|
|
||||||
|
|
||||||
A :class:`torch.iinfo` provides the following attributes:
|
|
||||||
|
|
||||||
========= ===== ========================================
|
|
||||||
Name Type Description
|
|
||||||
========= ===== ========================================
|
|
||||||
bits int The number of bits occupied by the type.
|
|
||||||
max int The largest representable number.
|
|
||||||
min int The smallest representable number.
|
|
||||||
========= ===== ========================================
|
|
||||||
@ -1,8 +1,13 @@
|
|||||||
torch.utils
|
# torch.utils
|
||||||
===================================
|
```{eval-rst}
|
||||||
.. automodule:: torch.utils
|
.. automodule:: torch.utils
|
||||||
.. currentmodule:: torch.utils
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
|
.. currentmodule:: torch.utils
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. autosummary::
|
.. autosummary::
|
||||||
:toctree: generated
|
:toctree: generated
|
||||||
:nosignatures:
|
:nosignatures:
|
||||||
@ -12,9 +17,11 @@ torch.utils
|
|||||||
get_cpp_backtrace
|
get_cpp_backtrace
|
||||||
set_module
|
set_module
|
||||||
swap_tensors
|
swap_tensors
|
||||||
|
```
|
||||||
|
|
||||||
.. This module needs to be documented. Adding here in the meantime
|
<!-- This module needs to be documented. Adding here in the meantime
|
||||||
.. for tracking purposes
|
for tracking purposes -->
|
||||||
|
```{eval-rst}
|
||||||
.. py:module:: torch.utils.backend_registration
|
.. py:module:: torch.utils.backend_registration
|
||||||
.. py:module:: torch.utils.benchmark.examples.compare
|
.. py:module:: torch.utils.benchmark.examples.compare
|
||||||
.. py:module:: torch.utils.benchmark.examples.fuzzer
|
.. py:module:: torch.utils.benchmark.examples.fuzzer
|
||||||
@ -87,3 +94,4 @@ torch.utils
|
|||||||
.. py:module:: torch.utils.tensorboard.writer
|
.. py:module:: torch.utils.tensorboard.writer
|
||||||
.. py:module:: torch.utils.throughput_benchmark
|
.. py:module:: torch.utils.throughput_benchmark
|
||||||
.. py:module:: torch.utils.weak
|
.. py:module:: torch.utils.weak
|
||||||
|
```
|
||||||
@ -1,8 +1,12 @@
|
|||||||
torch.xpu
|
# torch.xpu
|
||||||
===================================
|
```{eval-rst}
|
||||||
.. automodule:: torch.xpu
|
.. automodule:: torch.xpu
|
||||||
|
```
|
||||||
|
```{eval-rst}
|
||||||
.. currentmodule:: torch.xpu
|
.. currentmodule:: torch.xpu
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. autosummary::
|
.. autosummary::
|
||||||
:toctree: generated
|
:toctree: generated
|
||||||
:nosignatures:
|
:nosignatures:
|
||||||
@ -26,9 +30,10 @@ torch.xpu
|
|||||||
set_stream
|
set_stream
|
||||||
stream
|
stream
|
||||||
synchronize
|
synchronize
|
||||||
|
```
|
||||||
|
|
||||||
Random Number Generator
|
## Random Number Generator
|
||||||
-------------------------
|
```{eval-rst}
|
||||||
.. autosummary::
|
.. autosummary::
|
||||||
:toctree: generated
|
:toctree: generated
|
||||||
:nosignatures:
|
:nosignatures:
|
||||||
@ -42,21 +47,27 @@ Random Number Generator
|
|||||||
seed_all
|
seed_all
|
||||||
set_rng_state
|
set_rng_state
|
||||||
set_rng_state_all
|
set_rng_state_all
|
||||||
|
```
|
||||||
|
|
||||||
Streams and events
|
## Streams and events
|
||||||
------------------
|
```{eval-rst}
|
||||||
.. autosummary::
|
.. autosummary::
|
||||||
:toctree: generated
|
:toctree: generated
|
||||||
:nosignatures:
|
:nosignatures:
|
||||||
|
|
||||||
Event
|
Event
|
||||||
Stream
|
Stream
|
||||||
|
```
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
.. automodule:: torch.xpu.memory
|
.. automodule:: torch.xpu.memory
|
||||||
|
```
|
||||||
|
```{eval-rst}
|
||||||
.. currentmodule:: torch.xpu.memory
|
.. currentmodule:: torch.xpu.memory
|
||||||
|
```
|
||||||
|
|
||||||
Memory management
|
## Memory management
|
||||||
-----------------
|
```{eval-rst}
|
||||||
.. autosummary::
|
.. autosummary::
|
||||||
:toctree: generated
|
:toctree: generated
|
||||||
:nosignatures:
|
:nosignatures:
|
||||||
@ -71,9 +82,11 @@ Memory management
|
|||||||
memory_stats_as_nested_dict
|
memory_stats_as_nested_dict
|
||||||
reset_accumulated_memory_stats
|
reset_accumulated_memory_stats
|
||||||
reset_peak_memory_stats
|
reset_peak_memory_stats
|
||||||
|
```
|
||||||
|
|
||||||
|
<!-- This module needs to be documented. Adding here in the meantime
|
||||||
.. This module needs to be documented. Adding here in the meantime
|
for tracking purposes -->
|
||||||
.. for tracking purposes
|
```{eval-rst}
|
||||||
.. py:module:: torch.xpu.random
|
.. py:module:: torch.xpu.random
|
||||||
.. py:module:: torch.xpu.streams
|
.. py:module:: torch.xpu.streams
|
||||||
|
```
|
||||||
Reference in New Issue
Block a user