Refactor saving jit::Module to mobile .pt in 2 steps: (#66494)

Summary:
1. is to convert Function -> mobile::Function
2. is to serialize mobile::Function

This also opens opportunity to create mobile::Module without saving/reloading

Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66494

Reviewed By: zhxchen17

Differential Revision: D32293022

Pulled By: qihqi

fbshipit-source-id: 29b43d47ff86071d5e2f9d6ca4dba4445711ce3d
This commit is contained in:
Han Qi
2021-11-17 11:57:56 -08:00
committed by Facebook GitHub Bot
parent e2aeb4a7af
commit 4eb772fde6
13 changed files with 1449 additions and 378 deletions

View File

@ -67,6 +67,7 @@ set(JIT_TEST_SRCS
${JIT_TEST_ROOT}/test_irparser.cpp ${JIT_TEST_ROOT}/test_irparser.cpp
${JIT_TEST_ROOT}/test_jit_type.cpp ${JIT_TEST_ROOT}/test_jit_type.cpp
${JIT_TEST_ROOT}/test_lite_interpreter.cpp ${JIT_TEST_ROOT}/test_lite_interpreter.cpp
${JIT_TEST_ROOT}/test_lite_interpreter_direct.cpp
${JIT_TEST_ROOT}/test_lite_trainer.cpp ${JIT_TEST_ROOT}/test_lite_trainer.cpp
${JIT_TEST_ROOT}/test_memory_dag.cpp ${JIT_TEST_ROOT}/test_memory_dag.cpp
${JIT_TEST_ROOT}/test_misc.cpp ${JIT_TEST_ROOT}/test_misc.cpp

View File

@ -0,0 +1,921 @@
#include <test/cpp/jit/test_utils.h>
#include <gtest/gtest.h>
#include <c10/core/TensorOptions.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/resolver.h>
#include <torch/csrc/jit/mobile/backport.h>
#include <torch/csrc/jit/mobile/backport_manager.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/model_compatibility.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/mobile/parse_bytecode.h>
#include <torch/csrc/jit/mobile/parse_operators.h>
#include <torch/csrc/jit/mobile/runtime_compatibility.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/export_bytecode.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/custom_class.h>
#include <torch/torch.h>
#include <unordered_set>
// Tests go in torch::jit
namespace torch {
namespace jit {
TEST(LiteInterpreterDirectTest, UpsampleNearest2d) {
Module m("m");
m.define(R"(
def forward(self, input: Tensor, scale:float):
return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale))
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({1, 3, 128, 128}));
inputs.emplace_back(at::Scalar(2.0));
auto ref = m.forward(inputs);
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
IValue res;
res = bc.forward(inputs);
auto resd = res.toTensor();
auto refd = ref.toTensor();
ASSERT_TRUE(resd.equal(refd));
}
TEST(LiteInterpreterDirectTest, CheckAttrAccess) {
Module m("m");
m.register_attribute("mobile_optimized", BoolType::get(), true);
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
bool mobile_optimized = bc.attr("mobile_optimized", false).toBool();
AT_ASSERT(mobile_optimized);
m.setattr("mobile_optimized", false);
bc = jitModuleToMobile(m, options);
mobile_optimized = bc.attr("mobile_optimized", false).toBool();
AT_ASSERT(!mobile_optimized);
}
TEST(
LiteInterpreterDirectTest,
MethodInvocation) { // NOLINT (use =delete in gtest)
const std::vector<std::string> test_programs{
// test invoking a method with default parameter
R"(
def test_func(self, x, b : int = 4):
return self.foo + x + b
)",
// inner method call with default parameter (gets inlined)
R"(
def add_with_default_arg(self, x, b : int = 4):
return self.foo + x + b
def test_func(self, x):
return self.add_with_default_arg(x) # invoke method w/ default arg
)",
// simple method call
R"(
def test_func(self, x):
b = 4
return self.foo + x + b
)",
};
for (const auto& test_program : test_programs) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(test_program);
const int fortyTwo = 42; // (keep linter happy)
auto minput = fortyTwo * torch::ones({});
auto ref = m.run_method("test_func", minput);
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
const auto& test_func = bc.get_method("test_func");
std::cerr << "hello " << std::endl;
IValue res;
for (int i = 0; i < 3; ++i) {
res = test_func({minput});
}
std::cerr << "hello 3" << std::endl;
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
}
TEST(LiteInterpreterDirectTest, Conv) {
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
if (s && strcmp(s, "1") == 0)
return;
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
return torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
)");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace)
inputs.push_back(torch::ones({1, 1, 28, 28}));
auto outputref = m.forward(inputs).toTensor();
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
}
TEST(LiteInterpreterDirectTest, Inline) {
Module m("m");
m.define(R"JIT(
def foo1(self, x):
return x + 1
def foo2(self, x):
return self.foo1(x) + 2
def foo3(self, x):
return self.foo2(x) + 3
)JIT");
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("foo3")(inputs);
AT_ASSERT(output.toTensor().item<float>() == 7.0);
}
TEST(LiteInterpreterDirectTest, Tuple) {
Module m("m");
m.define(R"JIT(
def foo(self, x):
return (1, 2, x + 3)
def forward(self, x):
tuple = self.foo(x)
return tuple
)JIT");
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toTupleRef().elements()[1].toInt() == 2);
}
TEST(LiteInterpreterDirectTest, Dict) {
Module m("m");
m.define(R"JIT(
def foo(self, x):
return {"result": x + 1}
def forward(self, x):
d = self.foo(x)
return d
)JIT");
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toGenericDict().at("result").toTensor().item().toInt() == 2);
}
TEST(LiteInterpreterDirectTest, Prim) {
Module m("m");
m.define(R"JIT(
def forward(self, x):
return int(x)
)JIT");
std::vector<IValue> inputs;
auto minput = 3.5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.run_method("forward", minput);
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resi = res.toInt();
auto refi = ref.toInt();
AT_ASSERT(resi == refi);
}
TEST(LiteInterpreterDirectTest, PrimScalar) {
Module m("m");
m.define(R"JIT(
def forward(self, x):
return int(x.item())
)JIT");
std::vector<IValue> inputs;
auto minput = 3.5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.run_method("forward", minput);
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resi = res.toInt();
auto refi = ref.toInt();
AT_ASSERT(resi == refi);
}
TEST(LiteInterpreterDirectTest, WrongMethodName) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add(self, x):
b = 4
return self.foo + x + b
)");
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
ASSERT_THROWS_WITH_MESSAGE(
bc.get_method("forward")(inputs), "is not defined");
}
TEST(LiteInterpreterDirectTest, SetState) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def __getstate__(self):
return self.foo
def __setstate__(self, a):
self.foo = a
def forward(self, x):
b = 4
return self.foo + x + b
)");
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
std::stringstream ms;
m.save(ms);
auto loaded_m = load(ms);
auto ref = loaded_m.run_method("forward", minput);
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
class TorchBindLiteInterpreterDirectTestStruct
: public torch::jit::CustomClassHolder {
public:
std::string get(at::Tensor t) {
std::stringstream ss;
ss << "Hello! Your tensor has ";
ss << t.numel();
ss << " elements!";
return ss.str();
}
};
namespace {
struct ClassNamespaceValue : public SugaredValue {
explicit ClassNamespaceValue(c10::QualifiedName name)
: basename_(std::move(name)) {}
std::shared_ptr<SugaredValue> attr(
const SourceRange&,
GraphFunction&,
const std::string& name) override {
const auto fullName = c10::QualifiedName(basename_, name);
// Check to see if it is a custom class.
if (auto custom_class = getCustomClass(fullName.qualifiedName())) {
return std::make_shared<ClassValue>(custom_class);
}
// If it's not a custom class, assume it's another namespace
// NOLINTNEXTLINE(performance-move-const-arg)
return std::make_shared<ClassNamespaceValue>(fullName);
}
std::string kind() const override {
return "Class Namespace";
}
private:
c10::QualifiedName basename_;
};
struct TestModuleResolver : public Resolver {
std::shared_ptr<SugaredValue> resolveValue(
const std::string& name,
GraphFunction&,
const SourceRange&) override {
if (name == "torch") {
return std::make_shared<BuiltinModule>("aten");
} else if (name == "__torch__") {
return std::make_shared<ClassNamespaceValue>(c10::QualifiedName(name));
}
return nullptr;
}
TypePtr resolveType(const std::string&, const SourceRange&) override {
return nullptr;
}
};
} // namespace
TEST(LiteInterpreterDirectTest, BuiltinFunction) {
script::Module m("m");
auto custom_class_obj =
make_custom_class<TorchBindLiteInterpreterDirectTestStruct>();
m.register_attribute("my_obj", custom_class_obj.type(), custom_class_obj);
m.define(R"(
def forward(self, x) -> str:
return self.my_obj.get(x)
)");
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
auto res =
bc.get_method("forward")(std::vector<IValue>{torch::zeros({3, 4})});
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto str = res.toStringRef();
std::string expected = "Hello! Your tensor has 12 elements!";
AT_ASSERT(str == expected);
}
#if !defined FB_XPLAT_BUILD
TEST(LiteInterpreterDirectTest, GetRuntimeByteCodeVersion) {
auto runtime_bytecode_version = _get_runtime_bytecode_version();
AT_ASSERT(
runtime_bytecode_version ==
caffe2::serialize::kMaxSupportedBytecodeVersion);
}
TEST(LiteInterpreterDirectTest, GetRuntimeOperatorsVersion) {
auto runtime_operators_version = _get_runtime_operators_min_max_versions();
AT_ASSERT(
runtime_operators_version.first ==
caffe2::serialize::kMinSupportedFileFormatVersion &&
runtime_operators_version.second ==
caffe2::serialize::kMaxSupportedFileFormatVersion);
}
/**
* The test below is disarmed for FB internal xplat builds since
* BUCK requires us to pass in the script_module_v4.ptl file in
* as a resource dependency of the build rule for this file, and
* we would need to access it via the C++ Resources API instead
* of directly reading from disk (which is what the open source
* build/run does).
*/
TEST(LiteInterpreterDirectTest, GetByteCodeVersion) {
std::string filePath(__FILE__);
auto test_model_file_v4 =
filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file_v4.append("script_module_v4.ptl");
auto version_v4 = _get_model_bytecode_version(test_model_file_v4);
AT_ASSERT(version_v4 == 4);
}
#endif // !defined(FB_XPLAT_BUILD)
TEST(LiteInterpreterDirectTest, GetRuntimeOpsAndInfo) {
auto runtime_ops = _get_runtime_ops_and_info();
// Ballpark estimate of the minimal number of ops; just used to
// verify API returns a reasonably large number.
AT_ASSERT(runtime_ops.size() > 2900);
}
TEST(LiteInterpreterDirectTest, Eval) {
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.define(R"(
def __init__(self, x):
self.training = True
def forward(self, input):
return torch.dropout(input, 1.0, self.training)
)");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace)
inputs.push_back(torch::ones({1, 1, 28, 28}));
m.eval();
auto outputref = m.forward(inputs).toTensor();
// save m in training mode to make sure that mobile eval() will correctly
// change back to eval mode
m.train();
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
bc.eval();
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
}
TEST(LiteInterpreterDirectTest, FindWrongMethodName) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add(self, x):
b = 4
return self.foo + x + b
)");
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
ASSERT_TRUE(bc.find_method("forward") == c10::nullopt);
}
TEST(LiteInterpreterDirectTest, FindAndRunMethod) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_it(self, x):
b = 4
return self.foo + x + b
)");
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.get_method("add_it")(inputs);
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
IValue res;
for (int i = 0; i < 3; ++i) {
auto bcinputs = inputs;
auto method = bc.find_method("add_it");
AT_ASSERT(method != c10::nullopt);
res = (*method)(std::move(bcinputs));
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
TEST(LiteInterpreterDirectTest, RunMethodVariadic) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_three(self, x, y):
return self.foo + x + y
)");
std::vector<IValue> inputs;
auto inputx = 5 * torch::ones({});
auto inputy = 4 * torch::ones({});
auto ref = m.run_method("add_three", inputx, inputy);
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
IValue res = bc.run_method("add_three", inputx, inputy);
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
TEST(LiteInterpreterDirectTest, DuplicateSetState) {
Module m("M");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def __getstate__(self):
return self.foo + self.foo
def __setstate__(self, a):
self.foo = a
def forward(self, x):
b = 4
return self.foo + x + b
)");
Module b("B");
b.register_module("M0", m);
b.register_module("M1", m);
b.define(R"(
def forward(self, x):
return self.M0.forward(x) + self.M1.forward(x)
)");
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
const auto methods = bc.get_methods();
const size_t expected_n = 3;
ASSERT_EQ(methods.size(), expected_n);
}
TEST(LiteInterpreterDirectTest, OpNameExportFetchRootOperators) {
torch::jit::Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
x1 = torch.zeros(2, 2)
x2 = torch.empty_like(torch.empty(2, 2))
x3 = torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
return (x1, x2, x3)
)");
m.eval();
CompilationOptions options;
mobile::Module ptl_model = jitModuleToMobile(m, options);
std::set<std::string> operator_names =
torch::jit::mobile::_export_operator_list(ptl_model);
std::set<std::string> expected_operator_names = {
"aten::_convolution",
"aten::empty.memory_format",
"aten::empty_like",
"aten::zeros",
};
EXPECT_EQ(operator_names, expected_operator_names)
<< "Expected the root operator lists to be the same";
}
TEST(LiteInterpreterDirectTest, DefaultArgsConv) {
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
if (s && strcmp(s, "1") == 0)
return;
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
return torch.conv2d(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], 1)
)");
inputs.emplace_back(torch::ones({1, 1, 28, 28}));
auto outputref = m.forward(inputs).toTensor();
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
IValue res;
for (int i = 0; i < 1; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(output.equal(outputref));
}
namespace {
void testLiteModuleCompareResultTensors(
Module& m,
const std::vector<torch::jit::IValue>& inputs,
const std::string& method_name = "forward") {
auto outputref = m.get_method(method_name)(inputs).toTensor();
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method(method_name)(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(output.equal(outputref));
}
void testDefaultArgsPinv2(int num_args) {
Module m("m");
if (num_args == 1) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input)
)");
} else if (num_args == 2) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5)
)");
} else if (num_args == 3) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5, True)
)");
}
std::vector<torch::jit::IValue> inputs;
const int N = 28;
auto input = torch::range(1, N * N, 1);
input[0] = 1; // a more stable matrix
input = input.view({N, N});
inputs.emplace_back(input);
testLiteModuleCompareResultTensors(m, inputs);
}
} // namespace
#if !defined FB_XPLAT_BUILD
TEST(LiteInterpreterDirectTest, DefaultArgsPinv) {
// Test with different number of specified arguments.
// Arguments not specified take default value.
for (int num_args = 1; num_args <= 3; ++num_args) {
testDefaultArgsPinv2(num_args);
}
// bytecode with one specified argument:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 1),)),
// ('constants', (False, 1e-15)), # default constants are not
// used
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
// bytecode with 2 specified argument:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('LOADC', 1, 0), # added LOADC for specified argument
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 2),)),
// ('constants', (False, 1e-05)), # updated constant table
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
// bytecode with 3 specified arguments:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('LOADC', 1, 0),
// ('LOADC', 0, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 3),)),
// ('constants', (True, 1e-05)),
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
}
TEST(LiteInterpreterDirectTest, DefaultArgsTensorinvSpecifyDefault) {
// The second argument is specified, but the value is the same as the default
// value. It's treated as "not specified" since the value can be fetched from
// schema.
Module m("m");
m.define(R"(
def forward(self, input):
return torch.linalg_tensorinv(input, 2)
)");
torch::jit::MobileCode code(m.get_method("forward").graph(), "forward");
auto arg_nums = code.op_to_num_specified_args();
ASSERT_EQ(arg_nums.size(), 1);
ASSERT_EQ(arg_nums["aten::linalg_tensorinv"], 1);
std::vector<torch::jit::IValue> inputs;
const int N = 4;
auto input = torch::rand({N, N, N, N});
inputs.emplace_back(input);
testLiteModuleCompareResultTensors(m, inputs);
}
void testDefaultArgsPinvWithOutArg2(int num_args) {
Module m("m");
if (num_args == 1) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, out=input)
)");
} else if (num_args == 2) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5, out=input)
)");
} else if (num_args == 3) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5, True, out=input)
)");
}
const int N = 28;
auto input = torch::range(1, N * N, 1);
input[0] = 10000; // a more stable matrix
input = input.view({N, N});
auto ref = m.run_method("forward", input);
TORCH_CHECK(!input.equal(torch::range(1, N * N, 1)));
TORCH_CHECK(input.equal(ref.toTensor()));
}
TEST(LiteInterpreterDirectTest, DefaultArgsPinvWithOutArg) {
// Test with different number of specified arguments + out arg.
// Arguments not specified take default value.
for (int num_args = 1; num_args <= 3; ++num_args) {
testDefaultArgsPinvWithOutArg2(num_args);
}
}
TEST(LiteInterpreterDirectTest, DefaultArgsWithOutArg) {
Module m("m");
m.define(R"(
def forward(self, x, h):
torch.add(x, h, out=x)
)");
std::vector<IValue> inputs;
auto input_x = 2 * torch::ones({});
auto input_h = torch::ones({});
auto ref = m.run_method("forward", input_x, input_h);
CompilationOptions options;
mobile::Module bc = jitModuleToMobile(m, options);
bc.run_method("forward", input_x, input_h);
AT_ASSERT(input_x.equal(4 * torch::ones({})));
}
TEST(LiteInterpreterDirectTest, TestExceptionStackWithTwoLevelModuleHierarchy) {
Module a("A");
a.define(R"(
def bar(self, x, y):
return x + y
)");
Module b("B");
b.register_module("A0", a);
b.define(R"(
def foo(self, x, y):
return self.A0.bar(x, y) + 2
)");
Module c("C");
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.B0.foo(x, y) + 3
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
CompilationOptions options;
auto lite_m = jitModuleToMobile(c, options);
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.B0(B)::foo.A0(A)::bar.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.B0.foo(x, y) + 3
~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in foo
def foo(self, x, y):
return self.A0.bar(x, y) + 2
~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in bar
def bar(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(lite_m.forward(inputs), error_pattern);
}
#endif // !defined(FB_XPLAT_BUILD)
namespace {
static auto reg =
torch::class_<TorchBindLiteInterpreterDirectTestStruct>(
"_TorchScriptTesting",
"_LiteInterpreterDirectTest")
.def(torch::init<>())
.def("get", &TorchBindLiteInterpreterDirectTestStruct::get)
.def_pickle(
// __getattr__
[](const c10::intrusive_ptr<
TorchBindLiteInterpreterDirectTestStruct>&) -> int64_t {
return 0;
},
// __setattr__
[](int64_t) {
return c10::make_intrusive<
TorchBindLiteInterpreterDirectTestStruct>();
});
} // namespace
TEST(LiteInterpreterDirectTest, OperatorCacheDifferentiatesDefaultArgs) {
// Create 3 methods:
//
// 1. forward() returns a tensor with dtype=torch.int64 (4)
// 2. forward2() returns a tensor with dtype=torch.float32 (6)
// 3. forward3() returns a tensor with dtype=torch.float32 but
// the dtype is inferred by the input tensor's dtype
//
// If caching works correctly, then the result from the full-jit
// module and the lite module will be the same. Otherwise, it
// will be different if we don't correctly ignore the cache
// entry for an operator that has a different number of
// arguments.
Module m("m");
m.define(R"(
def forward(self):
ret1 = torch.new_empty(torch.zeros(10), [10], dtype=4)
return ret1.fill_(25)
)");
m.define(R"(
def forward2(self):
ret1 = torch.new_empty(torch.zeros(10), [10], dtype=6)
return ret1.fill_(32.0)
)");
m.define(R"(
def forward3(self):
ret1 = torch.new_empty(torch.zeros(10), [10])
return ret1.fill_(12.0)
)");
std::vector<torch::jit::IValue> inputs;
testLiteModuleCompareResultTensors(m, inputs, "forward");
testLiteModuleCompareResultTensors(m, inputs, "forward2");
testLiteModuleCompareResultTensors(m, inputs, "forward3");
}
} // namespace jit
} // namespace torch

View File

@ -24,6 +24,10 @@ struct TORCH_API GraphFunction : public Function {
void run(Stack& stack) override; void run(Stack& stack) override;
std::function<void(GraphFunction&)> function_creator() const {
return function_creator_;
}
c10::intrusive_ptr<c10::ivalue::Future> runAsync( c10::intrusive_ptr<c10::ivalue::Future> runAsync(
Stack& stack, Stack& stack,
TaskLauncher taskLauncher = at::launch) override; TaskLauncher taskLauncher = at::launch) override;

View File

@ -20,6 +20,7 @@ struct Code {
std::vector<Instruction> instructions_; std::vector<Instruction> instructions_;
std::vector<DebugHandle> debug_handles_; std::vector<DebugHandle> debug_handles_;
std::vector<c10::OperatorName> op_names_; std::vector<c10::OperatorName> op_names_;
std::vector<int> operator_input_sizes_;
std::vector<std::function<void(Stack&)>> operators_; std::vector<std::function<void(Stack&)>> operators_;
std::vector<c10::IValue> constants_; std::vector<c10::IValue> constants_;
std::vector<c10::TypePtr> types_; std::vector<c10::TypePtr> types_;

View File

@ -23,6 +23,10 @@ class MobileDebugTable {
MobileDebugTable( MobileDebugTable(
std::unique_ptr<caffe2::serialize::PyTorchStreamReader>& reader, std::unique_ptr<caffe2::serialize::PyTorchStreamReader>& reader,
const std::shared_ptr<CompilationUnit>& cu); const std::shared_ptr<CompilationUnit>& cu);
template <typename It>
MobileDebugTable(It begin, It end) : callstack_ptr_map_(begin, end) {}
std::string getSourceDebugString( std::string getSourceDebugString(
const int64_t debug_handle, const int64_t debug_handle,
const std::string& top_module_type_name = "ModuleTypeUnknown") const; const std::string& top_module_type_name = "ModuleTypeUnknown") const;
@ -36,6 +40,11 @@ class MobileDebugTable {
const std::vector<int64_t>& debug_handles, const std::vector<int64_t>& debug_handles,
const std::string& top_module_type_name = "ModuleTypeUnknown") const; const std::string& top_module_type_name = "ModuleTypeUnknown") const;
const ska::flat_hash_map<int64_t, DebugInfoTuple>& getCallStackPtrMap()
const {
return callstack_ptr_map_;
}
private: private:
std::pair<std::string, std::string> getSourceDebugModuleHierarchyInfo( std::pair<std::string, std::string> getSourceDebugModuleHierarchyInfo(
const std::vector<int64_t>& debug_handles, const std::vector<int64_t>& debug_handles,

View File

@ -13,6 +13,14 @@ namespace mobile {
Function::Function(c10::QualifiedName name) Function::Function(c10::QualifiedName name)
: name_(std::move(name)), code_(std::make_shared<Code>()) {} : name_(std::move(name)), code_(std::make_shared<Code>()) {}
Function::Function(
c10::QualifiedName name,
std::shared_ptr<Code> code,
at::optional<c10::FunctionSchema> schema)
: name_(std::move(name)),
code_(std::move(code)),
schema_(std::move(schema)) {}
const c10::QualifiedName& Function::qualname() const { const c10::QualifiedName& Function::qualname() const {
return name_; return name_;
} }
@ -43,89 +51,11 @@ bool Function::append_operator(
// Keep the original opname in code_ // Keep the original opname in code_
code_->op_names_.emplace_back(name, overload_name); code_->op_names_.emplace_back(name, overload_name);
const auto& opname = code_->op_names_.back(); const auto& opname = code_->op_names_.back();
const auto full_name = c10::toString(opname); auto func = makeOperatorFunction(opname, num_specified_args, model_version);
if (!func.has_value()) {
std::function<void(Stack&)> fn; return false;
const std::vector<c10::Argument>* pArgs = nullptr;
bool promoted_op = mobile::hasPrimOpsFn(full_name);
if (promoted_op) {
fn = mobile::getPrimOpsFn(full_name);
} else {
std::shared_ptr<Operator> jit_op = findOperatorFor(opname);
if (jit_op) {
fn = [jit_op](Stack& stack) { jit_op->getOperation()(stack); };
pArgs = &jit_op->schema().arguments();
} else {
auto op = c10::Dispatcher::singleton().findSchema(opname);
if (op.has_value()) {
fn = [op](Stack& stack) { op->callBoxed(&stack); };
if (op->hasSchema()) {
pArgs = &op->schema().arguments();
} else {
TORCH_CHECK(false, "arguments are missing for operator ", opname);
}
} else {
return false;
}
}
} }
code_->operators_.emplace_back(*func);
if (!promoted_op) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(pArgs);
const auto& args = *pArgs;
if (model_version == 0x3LL && opname.name == "aten::_convolution" &&
opname.overload_name.empty()) {
// Since byte-code versions 0x4L, convolution has an additional
// default-value argument (allow_tf32=True, see
// https://github.com/pytorch/pytorch/pull/40737). This wrapper handles
// backward compatibility with models of byte-code version <= 0x3L, where
// this bool argument does not yet exist.
fn = [fn](Stack& stack) {
stack.push_back(true);
fn(stack);
};
} else {
// num_specified_args >= 0 indicates number of arguments are available
// from model. We can use it to handle backward compatibility.
if (num_specified_args &&
num_specified_args.value() < static_cast<int64_t>(args.size())) {
fn = [fn, num_specified_args, &args](Stack& stack) {
std::vector<IValue> out_args;
// The following logic pops and temporarily stores all out arguments
// from the stack (which can be 0 or more, and always appended to the
// schema), in order to push the necessary default values. Finally,
// the out arguments are pushed back into the stack.
for (size_t i = args.size() - 1; i > 0 && args.at(i).is_out(); i--) {
out_args.push_back(stack.back());
stack.pop_back();
}
size_t start_index = num_specified_args.value() - out_args.size();
TORCH_CHECK(
start_index >= 0,
"The number of output arguments is: ",
out_args.size(),
", which is more then the number of specified arguments: ",
num_specified_args.value());
for (size_t i = start_index; i < (args.size() - out_args.size());
++i) {
TORCH_CHECK(
args[i].default_value().has_value(),
"Error happened at preparing for default values for the argument. The ",
i,
"th argument ",
args[i].name(),
" does not have a specified value or default value. ");
stack.push_back(args[i].default_value());
}
stack.insert(stack.end(), out_args.rbegin(), out_args.rend());
fn(stack);
};
}
}
}
code_->operators_.emplace_back(fn);
return true; return true;
} }
@ -197,6 +127,93 @@ const std::vector<int64_t>& Function::getExceptionDebugHandles() const {
return getInterpretersExceptionDebugHandles(); return getInterpretersExceptionDebugHandles();
} }
c10::optional<std::function<void(Stack&)>> makeOperatorFunction(
c10::OperatorName opname,
c10::optional<int> num_specified_args,
int64_t model_version) {
std::function<void(Stack&)> fn;
const auto full_name = c10::toString(opname);
const std::vector<c10::Argument>* pArgs = nullptr;
bool promoted_op = mobile::hasPrimOpsFn(full_name);
if (promoted_op) {
fn = mobile::getPrimOpsFn(full_name);
} else {
std::shared_ptr<Operator> jit_op = findOperatorFor(opname);
if (jit_op) {
fn = [jit_op](Stack& stack) { jit_op->getOperation()(stack); };
pArgs = &jit_op->schema().arguments();
} else {
auto op = c10::Dispatcher::singleton().findSchema(opname);
if (op.has_value()) {
fn = [op](Stack& stack) { op->callBoxed(&stack); };
if (op->hasSchema()) {
pArgs = &op->schema().arguments();
} else {
TORCH_CHECK(false, "arguments are missing for operator ", opname);
}
} else {
return c10::nullopt;
}
}
}
if (!promoted_op) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(pArgs);
const auto& args = *pArgs;
if (model_version == 0x3LL && opname.name == "aten::_convolution" &&
opname.overload_name.empty()) {
// Since byte-code versions 0x4L, convolution has an additional
// default-value argument (allow_tf32=True, see
// https://github.com/pytorch/pytorch/pull/40737). This wrapper handles
// backward compatibility with models of byte-code version <= 0x3L, where
// this bool argument does not yet exist.
fn = [fn](Stack& stack) {
stack.push_back(true);
fn(stack);
};
} else {
// num_specified_args >= 0 indicates number of arguments are available
// from model. We can use it to handle backward compatibility.
if (num_specified_args &&
num_specified_args.value() < static_cast<int64_t>(args.size())) {
fn = [fn, num_specified_args, &args](Stack& stack) {
std::vector<IValue> out_args;
// The following logic pops and temporarily stores all out arguments
// from the stack (which can be 0 or more, and always appended to the
// schema), in order to push the necessary default values. Finally,
// the out arguments are pushed back into the stack.
for (size_t i = args.size() - 1; i > 0 && args.at(i).is_out(); i--) {
out_args.push_back(stack.back());
stack.pop_back();
}
size_t start_index = num_specified_args.value() - out_args.size();
TORCH_CHECK(
start_index >= 0,
"The number of output arguments is: ",
out_args.size(),
", which is more then the number of specified arguments: ",
num_specified_args.value());
for (size_t i = start_index; i < (args.size() - out_args.size());
++i) {
TORCH_CHECK(
args[i].default_value().has_value(),
"Error happened at preparing for default values for the argument. The ",
i,
"th argument ",
args[i].name(),
" does not have a specified value or default value. ");
stack.push_back(args[i].default_value());
}
stack.insert(stack.end(), out_args.rbegin(), out_args.rend());
fn(stack);
};
}
}
}
return fn;
}
} // namespace mobile } // namespace mobile
} // namespace jit } // namespace jit
} // namespace torch } // namespace torch

View File

@ -17,6 +17,10 @@ struct Code;
class TORCH_API Function : public torch::jit::Function { class TORCH_API Function : public torch::jit::Function {
public: public:
explicit Function(c10::QualifiedName name); explicit Function(c10::QualifiedName name);
Function(
c10::QualifiedName name,
std::shared_ptr<Code> code,
at::optional<c10::FunctionSchema> schema);
void run(Stack& stack) override; void run(Stack& stack) override;
at::IValue operator()(Stack& stack); at::IValue operator()(Stack& stack);
void ensure_defined() override {} void ensure_defined() override {}
@ -24,6 +28,9 @@ class TORCH_API Function : public torch::jit::Function {
const c10::QualifiedName& qualname() const override; const c10::QualifiedName& qualname() const override;
bool call(Stack&, c10::function_ref<void(const mobile::Code&)>) override; bool call(Stack&, c10::function_ref<void(const mobile::Code&)>) override;
// NOTE: the APIs below is dangerous: if you call append_instruction with
// dbg_handle and then call it without; then the dbg_handle will become
// misaligned. Therefore only use ONE variant at time.
void append_instruction(OpCode op, int X, int N, int64_t dbg_handle); void append_instruction(OpCode op, int X, int N, int64_t dbg_handle);
void append_instruction(OpCode op, int X, int N); void append_instruction(OpCode op, int X, int N);
bool append_operator( bool append_operator(
@ -56,6 +63,11 @@ class TORCH_API Function : public torch::jit::Function {
at::optional<c10::FunctionSchema> schema_; // (byte-code version 4+) at::optional<c10::FunctionSchema> schema_; // (byte-code version 4+)
}; };
c10::optional<std::function<void(Stack&)>> makeOperatorFunction(
c10::OperatorName opname,
c10::optional<int> num_specified_args,
int64_t model_version);
} // namespace mobile } // namespace mobile
} // namespace jit } // namespace jit
} // namespace torch } // namespace torch

View File

@ -94,15 +94,15 @@ bool InterpreterState::run(Stack& stack) {
debug_handle = *handle; debug_handle = *handle;
} }
// std::cout << "RUNNING " << pc << " " // std::cout << "RUNNING " << pc << " " << code.instructions_[pc];
// << code_->instructions_with_handles_[pc].instruction;
// if (inst.op == OP) { // if (inst.op == OP) {
// std::cout << ", " << code_->op_names_[inst.X].name; // std::cout << ", " << code.op_names_[inst.X].name;
// if (!code_->op_names_[inst.X].overload_name.empty()) { // if (!code.op_names_[inst.X].overload_name.empty()) {
// std::cout << "." << code_->op_names_[inst.X].overload_name; // std::cout << "." << code.op_names_[inst.X].overload_name;
// } // }
// } // }
// std::cout << std::endl; // std::cout << std::endl;
// std::cout << "top " << stack.back().tagKind() << std::endl;
// TODO(iliacher): remove the workaround after RecordFunction is in // TODO(iliacher): remove the workaround after RecordFunction is in
// Dispatcher // Dispatcher

View File

@ -135,7 +135,7 @@ class TORCH_API Module {
std::unordered_map<std::string, std::string> metadata_; std::unordered_map<std::string, std::string> metadata_;
std::shared_ptr<CompilationUnit> cu_; std::shared_ptr<CompilationUnit> cu_;
MobileDebugTable debug_table_; MobileDebugTable debug_table_;
bool has_debug_handles_; bool has_debug_handles_ = false;
}; };
} // namespace mobile } // namespace mobile
} // namespace jit } // namespace jit

View File

@ -33,7 +33,6 @@ using torch::distributed::autograd::DistAutogradContainer;
#endif #endif
#include <exception> #include <exception>
#include <iostream>
#include <memory> #include <memory>
#include <mutex> #include <mutex>
#include <ostream> #include <ostream>

View File

@ -1,23 +1,333 @@
#include <torch/csrc/jit/serialization/export_bytecode.h> #include <torch/csrc/jit/serialization/export_bytecode.h>
#include <utility>
#include <torch/csrc/jit/runtime/instruction.h> #include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/export.h> #include <torch/csrc/jit/serialization/export.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/api/method.h>
#include <torch/csrc/jit/backends/backend_debug_handler.h>
#include <torch/csrc/jit/backends/backend_debug_info.h>
#include <torch/csrc/jit/frontend/source_range.h>
#include <torch/csrc/jit/ir/attributes.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/type_hashing.h>
#include <torch/csrc/jit/mobile/function.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/method.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/serialization/callstack_debug_info_serialization.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/import_export_functions.h>
#include <torch/csrc/jit/serialization/import_export_helpers.h>
#include <torch/csrc/jit/serialization/pickle.h>
#include <torch/csrc/jit/serialization/python_print.h>
#include <torch/csrc/jit/serialization/source_range_serialization.h>
#include <torch/csrc/jit/serialization/type_name_uniquer.h>
#include <caffe2/serialize/inline_container.h>
namespace torch { namespace torch {
namespace jit { namespace jit {
void BytecodeExportSet::add( std::vector<Method> gatherGetSetStates(ObjectPtr obj) {
const c10::QualifiedName& qn, std::vector<Method> methods;
ExportedFunction exported) { // Use DFS on IValue's to traverse dependencies of module._ivalue and
items_.emplace(qn, std::move(exported)); // add all setstate/getstates to initial stack.
std::vector<ObjectPtr> ivalue_stack;
ivalue_stack.emplace_back(obj);
while (!ivalue_stack.empty()) {
ObjectPtr cur = ivalue_stack.back();
ivalue_stack.pop_back();
auto type = cur->type();
Function* setstate = type->findMethod("__setstate__");
Function* getstate = type->findMethod("__getstate__");
if (getstate && setstate) {
if (setstate->isGraphFunction()) {
methods.emplace_back(cur, setstate);
}
if (getstate->isGraphFunction()) {
methods.emplace_back(cur, getstate);
}
} else {
for (size_t i = 0, n = type->numAttributes(); i < n; ++i) {
IValue field = cur->getSlot(i);
if (field.isObject()) {
ivalue_stack.emplace_back(field.toObject());
}
}
}
}
return methods;
} }
void BytecodeExportSet::update(const c10::QualifiedName& qn, bool toplevel) { std::vector<Method> findAllDependentFunctions(
items_.at(qn).toplevel = toplevel; const Module& module,
Graph& graph) {
std::vector<Method> methods;
std::unordered_set<c10::string_view> called_method_names;
auto nodes = findAllNodes(graph, c10::prim::CallMethod, true);
for (Node* node : nodes) {
if (auto iface = node->input(0)->type()->castRaw<InterfaceType>()) {
const FunctionSchema* schema = iface->getMethod(node->s(attr::name));
called_method_names.insert(schema->name());
}
}
for (const auto& submodule : module.modules()) {
for (const auto& m : submodule.get_methods()) {
if (called_method_names.find(m.function().qualname().name()) !=
called_method_names.end()) {
methods.emplace_back(m);
}
}
}
return methods;
} }
bool BytecodeExportSet::contains(const c10::QualifiedName& qn) const { // NOTE: order of functions returned will be:
return items_.find(qn) != items_.end(); // 1. functions originated from the methods passed in will be first
// 2. All the dependent functions will come afterwards.
// This order is meaningful because currently mobile Module looks up
// methods with linear search.
std::vector<std::unique_ptr<GraphFunction>> inlineFunctions(
const std::vector<Method>& initial_methods,
bool incl_dependent_functions) {
std::set<std::pair<std::string, Function*>> visited;
std::deque<Method> stack;
std::copy(
initial_methods.begin(),
initial_methods.end(),
std::back_inserter(stack));
std::vector<std::unique_ptr<GraphFunction>> inlined_functions;
while (!stack.empty()) {
Method cur = stack.front();
stack.pop_front();
auto tup = std::make_pair(
cur.owner()._ivalue()->type()->name()->qualifiedName(),
&cur.function());
if (visited.find(tup) != visited.end()) {
continue;
}
visited.insert(tup);
const auto& f = toGraphFunction(cur.function());
auto graph = f.graph()->copyUnique();
Inline(*graph);
c10::QualifiedName qn(*cur.owner()._ivalue()->type()->name(), f.name());
if (incl_dependent_functions) {
std::vector<Method> dependent_methods =
findAllDependentFunctions(cur.owner(), *graph);
std::copy(
dependent_methods.begin(),
dependent_methods.end(),
std::back_inserter(stack));
}
auto inlined_func = std::make_unique<GraphFunction>(
qn, std::move(graph), f.function_creator());
inlined_func->setSchema(f.getSchema());
inlined_functions.emplace_back(std::move(inlined_func));
}
return inlined_functions;
}
std::unique_ptr<mobile::Code> compileGraphToMobileCode(
const std::string& name,
const std::shared_ptr<Graph>& graph,
const CompilationOptions& compilation_options,
BackendDebugInfoRecorder& debug_info_recorder) {
MobileCode code(
graph,
name,
compilation_options.enable_default_value_for_unspecified_arg,
compilation_options.enable_default_args_before_out_args);
std::unique_ptr<mobile::Code> mobile_code_ptr =
std::make_unique<mobile::Code>();
mobile::Code& mobile_code = *mobile_code_ptr;
// operator names
std::vector<std::string> method_names;
std::vector<int64_t> op_debug_handles;
int next_new_op_index = 0;
auto op_to_specified_args = code.op_to_num_specified_args();
for (size_t i = 0; i < code.instructions().size(); ++i) {
Instruction ins = code.instructions()[i];
if ((ins.op == OP || ins.op == OPN) && ins.X == next_new_op_index) {
// Found a new op (assumes new operators ordered by ascending ins.X)
auto node = code.instructions_source()[i];
const c10::OperatorName& opname = node->schema().operator_name();
auto unique_name = c10::toString(opname);
// For operator with vararg, adding default arguments would be confusing
// and is not allowed. For an operator with num_args = -1, it means the
// number of arguments is not available for this operator, we don't do any
// backward compatibility adaptation at runtime.
c10::optional<int> num_args = c10::nullopt;
auto it = op_to_specified_args.find(unique_name);
if (it != op_to_specified_args.end()) {
num_args = it->second;
}
mobile_code.operator_input_sizes_.emplace_back(num_args.value_or(-1));
mobile_code.op_names_.emplace_back(opname);
auto func = mobile::makeOperatorFunction(
opname, num_args, compilation_options.model_version);
TORCH_INTERNAL_ASSERT(
func.has_value(),
"Operator with name: ",
toString(opname),
" not found");
mobile_code.operators_.emplace_back(*func);
next_new_op_index++;
}
// CALL nodes at this point represent built-in (i.e. non-Graph)
// functions that were not inlined. Here we convert the CALL
// instructions for these functions into INTERFACE_CALL instructions
// s.t. at runtime, we will look up the Function* on the Type of the
// 0th argument in the stack and call that directly.
if (ins.op == CALL) {
auto node = code.instructions_source()[i];
if (node->kind() == prim::CallMethod) {
// NB: replacing instruction
auto method_name_idx =
code.constant_table().size() + method_names.size();
method_names.emplace_back(node->s(attr::name));
ins = Instruction{
INTERFACE_CALL,
static_cast<int32_t>(method_name_idx),
static_cast<uint16_t>(node->inputs().size())};
} else {
TORCH_INTERNAL_ASSERT(
false, "Unsupported node kind on CALL opcode for mobile");
}
} else if (ins.op == RET) {
auto node = code.instructions_source()[i];
for (const auto& input : node->inputs()) {
const auto& input_type = input->type();
if (input_type->kind() == TypeKind::ListType ||
input_type->kind() == TypeKind::DictType) {
for (const TypePtr& element_type : input_type->containedTypes()) {
TORCH_CHECK(
element_type->kind() != TypeKind::ClassType,
"Returining a list or dictionary with pytorch class type ",
"is not supported in mobile module "
"(List[Foo] or Dict[int, Foo] for class Foo(torch.nn.Module)). "
"Workaround: instead of using pytorch class as their element type, ",
"use a combination of list, dictionary, and single types.");
}
}
}
} else {
TORCH_CHECK(
isOpSupportedInMobile(ins.op),
toString(ins.op),
" is not supported in mobile module.");
}
auto node = code.instructions_source()[i];
int64_t debug_handle = debug_info_recorder.getNextDebugHandle(node);
// Note 1-to-1 correspondence between instructions and debug handles
mobile_code.instructions_.emplace_back(ins);
mobile_code.debug_handles_.emplace_back(debug_handle);
}
// copy constants
mobile_code.constants_ = code.constant_table();
// Make a copy of the constants and append the method names
// that we emitted for the converted INTERFACE_CALL nodes above.
for (auto& method_name : method_names) {
mobile_code.constants_.emplace_back(method_name);
}
mobile_code.types_ = code.type_table();
mobile_code.register_size_ = code.register_size();
return mobile_code_ptr;
}
void checkSchema(const FunctionSchema& schema) {
TORCH_CHECK(
schema.overload_name().empty(), // @TODO: is this check correct?
"Overloads are not supported in mobile modules.");
TORCH_CHECK(
!schema.is_vararg(), "Python *args are not supported in mobile modules.");
TORCH_CHECK(
!schema.is_varret(),
"A variable number of return values is not supported in mobile modules.");
}
bool isLoweredModule(const Module& m) {
c10::QualifiedName type_name;
if (m.type()->name()) {
type_name = m.type()->name().value();
}
bool isLoweredModule = false;
for (const auto& atom : type_name.atoms()) {
if (atom == "LoweredModule") {
isLoweredModule = true;
break;
}
}
return isLoweredModule;
}
// Check if the global static map of backend debug info
// contains debug info for this module and any of its children.
// If so combine all the maps together and return one.
void getBackendDebugInfoMap(
const Module& m,
BackendDebugInfoMapType& debug_map) {
if (isLoweredModule(m)) {
auto backend_debug_info =
m.attr("__backend_debug_info").toCustomClass<PyTorchBackendDebugInfo>();
const auto& map = backend_debug_info->getDebugInfoMap();
if (map) {
debug_map.insert(map.value().begin(), map.value().end());
}
}
for (const auto& c : m.children()) {
getBackendDebugInfoMap(c, debug_map);
}
}
mobile::Module jitModuleToMobile(
const Module& module,
const CompilationOptions& options) {
std::shared_ptr<mobile::CompilationUnit> mcu =
std::make_shared<mobile::CompilationUnit>();
BackendDebugInfoRecorder debug_info_recorder;
std::vector<Method> methods_to_export = module.get_methods();
std::vector<Method> getsetstates = gatherGetSetStates(module._ivalue());
std::copy(
getsetstates.begin(),
getsetstates.end(),
std::back_inserter(methods_to_export));
for (const auto& func :
inlineFunctions(methods_to_export, options.incl_interface_call)) {
std::shared_ptr<mobile::Code> mobile_code_ptr = compileGraphToMobileCode(
func->name(), func->graph(), options, debug_info_recorder);
const auto& schema = func->getSchema();
checkSchema(schema);
auto mobile_func = std::make_unique<mobile::Function>(
func->qualname(), mobile_code_ptr, schema);
mcu->register_function(std::move(mobile_func));
}
mobile::Module m(module._ivalue(), mcu);
m.setHasDebugHandles(true);
BackendDebugInfoMapType backend_debug_info_map;
getBackendDebugInfoMap(module, backend_debug_info_map);
auto debug_handle_cs_ptr_map = debug_info_recorder.stopRecording();
debug_handle_cs_ptr_map.insert(
backend_debug_info_map.begin(), backend_debug_info_map.end());
m.setDebugTable(MobileDebugTable(
debug_handle_cs_ptr_map.begin(), debug_handle_cs_ptr_map.end()));
return m;
} }
} // namespace jit } // namespace jit

View File

@ -1,59 +1,31 @@
#pragma once #pragma once
#include <tuple>
#include <unordered_map> #include <unordered_map>
#include <ATen/core/function_schema.h> #include <ATen/core/function_schema.h>
#include <ATen/core/ivalue.h> #include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/qualified_name.h> #include <ATen/core/qualified_name.h>
#include <torch/csrc/jit/backends/backend_debug_handler.h> #include <torch/csrc/jit/backends/backend_debug_handler.h>
#include <torch/csrc/jit/mobile/function.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/runtime/interpreter.h> #include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/serialization/type_name_uniquer.h> #include <torch/csrc/jit/serialization/type_name_uniquer.h>
namespace torch { namespace torch {
namespace jit { namespace jit {
struct ExportedFunction { struct TORCH_API CompilationOptions {
ExportedFunction( bool incl_interface_call = false;
const Module& m, bool enable_default_value_for_unspecified_arg = false;
const Function& f, bool enable_default_args_before_out_args = true;
std::unique_ptr<Graph> g, int model_version = caffe2::serialize::kProducedBytecodeVersion;
bool t)
: mod(m), function(f), optimizedGraph(std::move(g)), toplevel(t) {}
Module mod;
const Function& function;
std::unique_ptr<Graph> optimizedGraph;
bool toplevel;
}; };
class TORCH_API BytecodeExportSet { TORCH_API mobile::Module jitModuleToMobile(
public: const Module& module,
BytecodeExportSet() = default; const CompilationOptions& options);
BytecodeExportSet(const BytecodeExportSet&) = delete;
BytecodeExportSet& operator=(const BytecodeExportSet&) = delete;
BytecodeExportSet(BytecodeExportSet&&) = default;
BytecodeExportSet& operator=(BytecodeExportSet&&) = default;
void add(const c10::QualifiedName& qn, ExportedFunction);
void update(const c10::QualifiedName& qn, bool toplevel);
bool contains(const c10::QualifiedName& qn) const;
template <typename F>
void visit(F&& f) {
for (auto& item : items_) {
if (item.second.toplevel) {
f(item.first, item.second);
}
}
for (auto& item : items_) {
if (!item.second.toplevel) {
f(item.first, item.second);
}
}
}
private:
std::unordered_map<c10::QualifiedName, ExportedFunction> items_;
};
} // namespace jit } // namespace jit
} // namespace torch } // namespace torch

View File

@ -38,6 +38,18 @@
namespace torch { namespace torch {
namespace jit { namespace jit {
CompilationOptions getOptionsFromGlobal() {
CompilationOptions compilation_options;
compilation_options.enable_default_args_before_out_args =
BytecodeEmitMode::is_default_args_before_out_args_enabled();
compilation_options.enable_default_value_for_unspecified_arg =
BytecodeEmitMode::is_default_value_for_unspecified_arg_enabled();
compilation_options.incl_interface_call = getMobileInterfaceCallExport();
compilation_options.model_version =
caffe2::serialize::kProducedBytecodeVersion;
return compilation_options;
}
IValue to_tuple(std::initializer_list<IValue> ivalues) { IValue to_tuple(std::initializer_list<IValue> ivalues) {
return c10::ivalue::Tuple::create(ivalues); return c10::ivalue::Tuple::create(ivalues);
} }
@ -63,138 +75,49 @@ ExportModuleExtraFilesHook& GetExtraFilesHook() {
} }
std::pair<IValue, IValue> getFunctionTuple( std::pair<IValue, IValue> getFunctionTuple(
const Module& module, const CompilationUnit& compilation_unit,
const Function& func, const mobile::Function& func,
std::unique_ptr<Graph> optimizedGraph,
BackendDebugInfoRecorder& debug_info_recorder, BackendDebugInfoRecorder& debug_info_recorder,
const std::string& qn,
TypeNameUniquer& type_name_uniquer_) { TypeNameUniquer& type_name_uniquer_) {
TORCH_INTERNAL_ASSERT(optimizedGraph); const std::shared_ptr<mobile::Code> mobile_code_ptr = func.get_code();
std::shared_ptr<MobileCode> code;
code = std::make_shared<MobileCode>(
std::move(optimizedGraph), func.name(), BytecodeEmitMode::is_default_value_for_unspecified_arg_enabled() /* emit_default_input_instructions */, BytecodeEmitMode::is_default_args_before_out_args_enabled() /* enable_defaults_args_with_out_args */);
auto instructions_copy = code->instructions();
// operator names
std::vector<c10::OperatorName> opnames;
std::vector<std::string> method_names;
std::vector<int64_t> op_debug_handles;
int next_new_op_index = 0;
for (size_t i = 0; i < instructions_copy.size(); ++i) {
Instruction ins = instructions_copy[i];
if ((ins.op == OP || ins.op == OPN) && ins.X == next_new_op_index) {
// Found a new op (assumes new operators ordered by ascending ins.X)
auto node = code->instructions_source()[i];
opnames.emplace_back(node->schema().operator_name());
next_new_op_index++;
}
// CALL nodes at this point represent built-in (i.e. non-Graph)
// functions that were not inlined. Here we convert the CALL
// instructions for these functions into INTERFACE_CALL instructions
// s.t. at runtime, we will look up the Function* on the Type of the
// 0th argument in the stack and call that directly.
if (ins.op == CALL) {
auto node = code->instructions_source()[i];
if (node->kind() == prim::CallMethod) {
// NB: replacing instruction
auto method_name_idx =
code->constant_table().size() + method_names.size();
method_names.emplace_back(node->s(attr::name));
Instruction new_instr{
INTERFACE_CALL,
static_cast<int32_t>(method_name_idx),
static_cast<uint16_t>(node->inputs().size())};
instructions_copy[i] = new_instr;
} else {
TORCH_INTERNAL_ASSERT(
false, "Unsupported node kind on CALL opcode for mobile");
}
} else if (ins.op == RET) {
auto node = code->instructions_source()[i];
for (const auto& input : node->inputs()) {
const auto& input_type = input->type();
if (input_type->kind() == TypeKind::ListType ||
input_type->kind() == TypeKind::DictType) {
for (const TypePtr& element_type : input_type->containedTypes()) {
TORCH_CHECK(
element_type->kind() != TypeKind::ClassType,
"Returining a list or dictionary with pytorch class type ",
"is not supported in mobile module "
"(List[Foo] or Dict[int, Foo] for class Foo(torch.nn.Module)). "
"Workaround: instead of using pytorch class as their element type, ",
"use a combination of list, dictionary, and single types.");
}
}
}
} else {
TORCH_CHECK(
isOpSupportedInMobile(ins.op),
toString(ins.op),
" is not supported in mobile module.");
}
auto node = code->instructions_source()[i];
int64_t debug_handle = debug_info_recorder.getNextDebugHandle(node);
// Note 1-to-1 correspondence between instructions and debug handles
op_debug_handles.emplace_back(debug_handle);
}
// instructions // instructions
std::vector<IValue> instructions; std::vector<IValue> instructions;
instructions.reserve(instructions_copy.size()); instructions.reserve(mobile_code_ptr->instructions_.size());
for (Instruction ins : instructions_copy) { for (Instruction ins : mobile_code_ptr->instructions_) {
instructions.emplace_back(to_tuple({toString(ins.op), ins.X, ins.N})); instructions.emplace_back(to_tuple({toString(ins.op), ins.X, ins.N}));
} }
// operators // operators
std::vector<IValue> operators; std::vector<IValue> operators;
auto op_to_specified_args = code->op_to_num_specified_args(); operators.reserve(mobile_code_ptr->op_names_.size());
operators.reserve(opnames.size()); for (int i = 0; i < mobile_code_ptr->op_names_.size(); ++i) {
for (const auto& opname : opnames) { const auto& opname = mobile_code_ptr->op_names_[i];
auto unique_name = c10::toString(opname); const int size = mobile_code_ptr->operator_input_sizes_[i];
// For operator with vararg, adding default arguments would be confusing and
// is not allowed. For an operator with num_args = -1, it means the number
// of arguments is not available for this operator, we don't do any backward
// compatibility adaptation at runtime.
int num_args = -1;
auto it = op_to_specified_args.find(unique_name);
if (it != op_to_specified_args.end()) {
num_args = it->second;
}
if (BytecodeEmitMode::is_default_value_for_unspecified_arg_enabled()) { if (BytecodeEmitMode::is_default_value_for_unspecified_arg_enabled()) {
operators.emplace_back(to_tuple({opname.name, opname.overload_name})); operators.emplace_back(to_tuple({opname.name, opname.overload_name}));
} else { } else {
operators.emplace_back( operators.emplace_back(
to_tuple({opname.name, opname.overload_name, num_args})); to_tuple({opname.name, opname.overload_name, size}));
} }
} }
// constants
//
// Make a copy of the constants and append the method names
// that we emitted for the converted INTERFACE_CALL nodes above.
auto constants = code->constant_table();
for (auto& method_name : method_names) {
constants.emplace_back(std::move(method_name));
}
// types // types
std::vector<IValue> types; std::vector<IValue> types;
types.reserve(code->type_table().size()); types.reserve(mobile_code_ptr->types_.size());
static const std::string torch_prefix("__torch__"); static const std::string torch_prefix("__torch__");
static const std::string class_prefix("__torch__.torch.classes"); static const std::string class_prefix("__torch__.torch.classes");
std::shared_ptr<torch::jit::CompilationUnit> cu =
module._ivalue()->compilation_unit();
for (const TypePtr& t : code->type_table()) { for (const TypePtr& t : mobile_code_ptr->types_) {
std::string type_str = t->annotation_str(); std::string type_str = t->annotation_str();
if (t->kind() == TypeKind::TupleType) { if (t->kind() == TypeKind::TupleType) {
TORCH_CHECK( TORCH_CHECK(
cu->get_named_tuple(t->str()), compilation_unit.get_named_tuple(t->str()),
"Can't find definition for the qualified name: ", "Can't find definition for the qualified name: ",
t->str(), t->str(),
"(TypeKind::TupleType) in compilation unit.", "(TypeKind::TupleType) in compilation unit.",
"Please report a bug to PyTorch."); "Please report a bug to PyTorch.");
auto named_tuple_type = cu->get_named_tuple(t->str()); auto named_tuple_type = compilation_unit.get_named_tuple(t->str());
if (named_tuple_type != nullptr) { if (named_tuple_type != nullptr) {
std::string named_tuple_str = t->str(); std::string named_tuple_str = t->str();
named_tuple_str.append("[NamedTuple, ["); named_tuple_str.append("[NamedTuple, [");
@ -254,12 +177,12 @@ std::pair<IValue, IValue> getFunctionTuple(
// since the register location is embedded into the bytecode, pass the // since the register location is embedded into the bytecode, pass the
// register size // register size
auto register_size = static_cast<int>(code->register_size()); auto register_size = static_cast<int>(mobile_code_ptr->register_size_);
auto codeTable = Table( auto codeTable = Table(
{{"instructions", to_tuple(instructions)}, {{"instructions", to_tuple(instructions)},
{"operators", to_tuple(operators)}, {"operators", to_tuple(operators)},
{"constants", to_tuple(constants)}, {"constants", to_tuple(mobile_code_ptr->constants_)},
{"types", to_tuple(types)}, {"types", to_tuple(types)},
{"register_size", register_size}}); {"register_size", register_size}});
@ -273,14 +196,7 @@ std::pair<IValue, IValue> getFunctionTuple(
} }
return c10::nullopt; return c10::nullopt;
}; };
TORCH_CHECK(
schema.overload_name().empty(), // @TODO: is this check correct?
"Overloads are not supported in mobile modules.");
TORCH_CHECK(
!schema.is_vararg(), "Python *args are not supported in mobile modules.");
TORCH_CHECK(
!schema.is_varret(),
"A variable number of return values is not supported in mobile modules.");
auto makeArgTuple = [&](const std::vector<Argument>& args) { auto makeArgTuple = [&](const std::vector<Argument>& args) {
std::vector<IValue> argTables; std::vector<IValue> argTables;
for (auto&& arg : args) { for (auto&& arg : args) {
@ -315,6 +231,17 @@ std::pair<IValue, IValue> getFunctionTuple(
}); });
// function tuple // function tuple
std::string qn;
if (func.name() == "__setstate__" || func.name() == "__getstate__") {
auto classtype = func.getSchema().arguments()[0].type()->cast<ClassType>();
TORCH_INTERNAL_ASSERT(
classtype, "class is null ", func.qualname().qualifiedName());
qn = c10::QualifiedName(
type_name_uniquer_.getUniqueName(classtype), func.name())
.qualifiedName();
} else {
qn = func.qualname().qualifiedName();
}
auto bytecode_vals = to_tuple({qn, codeTable, schemaTable}); auto bytecode_vals = to_tuple({qn, codeTable, schemaTable});
c10::optional<IValue> debug_info_vals; c10::optional<IValue> debug_info_vals;
@ -324,41 +251,27 @@ std::pair<IValue, IValue> getFunctionTuple(
// debug handles generated by debug_handle_manager // debug handles generated by debug_handle_manager
// will correspond to {source_range, inlinedCallStackPtr} which we will // will correspond to {source_range, inlinedCallStackPtr} which we will
// serialize separately. // serialize separately.
IValue module_debug_tuple = c10::ivalue::Tuple::create(op_debug_handles); IValue module_debug_tuple =
c10::ivalue::Tuple::create(mobile_code_ptr->debug_handles_);
auto function_debug_info = auto function_debug_info =
Table({{"function_debug_handles", module_debug_tuple}}); Table({{"function_debug_handles", module_debug_tuple}});
debug_info_vals = to_tuple({qn, function_debug_info}); debug_info_vals = to_tuple({qn, function_debug_info});
return std::make_pair(bytecode_vals, debug_info_vals); return std::make_pair(bytecode_vals, debug_info_vals);
} }
void pushFunctionToIValues( void pushMobileFunctionsToIValues(
BytecodeExportSet exportSet, const CompilationUnit& compilation_unit,
const mobile::Module& module,
std::vector<c10::IValue>& elements, std::vector<c10::IValue>& elements,
std::vector<c10::IValue>& debugInfoElements, std::vector<c10::IValue>& debugInfoElements,
BackendDebugInfoRecorder& recorder, BackendDebugInfoRecorder& recorder,
TypeNameUniquer& uniquer) { TypeNameUniquer& uniquer) {
exportSet.visit( for (const auto& method : module.get_methods()) {
[&](const c10::QualifiedName& qn, ExportedFunction& exported) { auto tuple = getFunctionTuple(
auto tuple = getFunctionTuple( compilation_unit, method.function(), recorder, uniquer);
exported.mod, elements.push_back(std::move(tuple.first));
exported.function, debugInfoElements.push_back(std::move(tuple.second));
std::move(exported.optimizedGraph), }
recorder,
qn.qualifiedName(),
uniquer);
elements.push_back(std::move(tuple.first));
debugInfoElements.push_back(std::move(tuple.second));
});
}
void pushFunctionToIValues(
BytecodeExportSet exportSet,
std::vector<c10::IValue>& elements,
BackendDebugInfoRecorder& recorder,
TypeNameUniquer& uniquer) {
std::vector<c10::IValue> debugInfoElements;
pushFunctionToIValues(
std::move(exportSet), elements, debugInfoElements, recorder, uniquer);
} }
std::unordered_set<const FunctionSchema*> getInterfaceCalls(Graph& graph) { std::unordered_set<const FunctionSchema*> getInterfaceCalls(Graph& graph) {
@ -402,61 +315,6 @@ std::vector<ModuleMethod> getModuleInterfaceExports(
return ret; return ret;
} }
void exportFunction(
BytecodeExportSet& exportSet,
const ModuleMethod& method,
bool toplevel = false) {
const auto& func = method.function;
const auto& qn = method.exportName;
if (exportSet.contains(qn)) {
if (toplevel) {
exportSet.update(qn, toplevel);
}
return;
}
auto graph = func.graph()->copyUnique();
Inline(*graph);
auto interfaceCalls = getInterfaceCalls(*graph);
exportSet.add(
qn, ExportedFunction{method.module, func, std::move(graph), toplevel});
if (!getMobileInterfaceCallExport()) {
return;
}
auto interfaces = getModuleInterfaceExports(method.module, interfaceCalls);
for (const auto& interface : interfaces) {
exportFunction(exportSet, interface);
}
}
void setstateTuple(
BytecodeExportSet& exportSet,
const Module& module,
const IValue& ivalue,
TypeNameUniquer& type_name_uniquer_,
bool toplevel = false) {
if (!ivalue.isObject())
return;
auto obj = ivalue.toObject();
auto type = obj->type();
if (checkHasValidSetGetState(type)) {
Function& setstate = type->getMethod("__setstate__");
auto qn = type_name_uniquer_.getUniqueName(obj->type()).qualifiedName() +
"." + setstate.name();
if (exportSet.contains(qn)) {
return;
}
if (auto f = tryToGraphFunction(setstate)) {
exportFunction(exportSet, ModuleMethod{module, *f, qn}, toplevel);
}
} else {
for (size_t i = 0, n = type->numAttributes(); i < n; ++i) {
setstateTuple(exportSet, module, obj->getSlot(i), type_name_uniquer_);
}
}
}
bool isLoweredModule(const Module& m) { bool isLoweredModule(const Module& m) {
c10::QualifiedName type_name; c10::QualifiedName type_name;
if (m.type()->name()) { if (m.type()->name()) {
@ -544,24 +402,6 @@ bool getMobileInterfaceCallExport() {
return mobileInterfaceCallExport().load(std::memory_order_relaxed); return mobileInterfaceCallExport().load(std::memory_order_relaxed);
} }
BytecodeExportSet moduleMethodsTuple(
const Module& module,
TypeNameUniquer& type_name_uniquer_) {
BytecodeExportSet exportSet;
auto methods = module.get_methods();
// top level methods
for (const auto& method : methods) {
const auto& f = toGraphFunction(method.function());
exportFunction(
exportSet, ModuleMethod{module, f, f.qualname()}, /* toplevel */ true);
}
// __setstate__ of all components
setstateTuple(exportSet, module, module._ivalue(), type_name_uniquer_, true);
return exportSet;
}
void SetExportModuleExtraFilesHook(ExportModuleExtraFilesHook hook) { void SetExportModuleExtraFilesHook(ExportModuleExtraFilesHook hook) {
GetExtraFilesHook() = std::move(hook); GetExtraFilesHook() = std::move(hook);
} }
@ -774,9 +614,12 @@ void ScriptModuleSerializer::writeByteCode(
// Always save debug handles // Always save debug handles
debug_info_elements.emplace_back(static_cast<int64_t>(version_to_write)); debug_info_elements.emplace_back(static_cast<int64_t>(version_to_write));
BytecodeExportSet exportSet = moduleMethodsTuple(module, type_name_uniquer_); mobile::Module mobile_module =
pushFunctionToIValues( jitModuleToMobile(module, getOptionsFromGlobal());
std::move(exportSet),
pushMobileFunctionsToIValues(
*module._ivalue()->compilation_unit(),
mobile_module,
elements, elements,
debug_info_elements, debug_info_elements,
debug_info_recorder, debug_info_recorder,
@ -840,9 +683,9 @@ void ScriptModuleSerializer::writeByteCode(
getBackendDebugInfoMap(module, backend_debug_info_map); getBackendDebugInfoMap(module, backend_debug_info_map);
// Now get the debug-handles-to-inlined-cs-ptr-map // Now get the debug-handles-to-inlined-cs-ptr-map
// And serialize that in a separate archive // And serialize that in a separate archive
auto debug_handle_cs_ptr_map = debug_info_recorder.stopRecording(); const auto& debug_info = mobile_module.getDebugTable().getCallStackPtrMap();
debug_handle_cs_ptr_map.insert( BackendDebugInfoMapType debug_handle_cs_ptr_map(
backend_debug_info_map.begin(), backend_debug_info_map.end()); debug_info.begin(), debug_info.end());
CallStackDebugInfoPickler cs_debug_info_pickler; CallStackDebugInfoPickler cs_debug_info_pickler;
auto cs_data = cs_debug_info_pickler.pickle( auto cs_data = cs_debug_info_pickler.pickle(
debug_handle_cs_ptr_map, source_range_tags_); debug_handle_cs_ptr_map, source_range_tags_);
@ -962,31 +805,13 @@ void ExportModule(
namespace { namespace {
void export_opnames(const script::Module& m, std::set<std::string>& opnames) { void export_opnames(const script::Module& m, std::set<std::string>& opnames) {
std::vector<c10::IValue> elements; mobile::Module mobile_m = jitModuleToMobile(m, getOptionsFromGlobal());
BackendDebugInfoRecorder dummy; for (const auto& method : mobile_m.get_methods()) {
TypeNameUniquer dummy_uniquer = TypeNameUniquer(); for (const auto& op : method.function().get_code()->op_names_) {
BytecodeExportSet exportSet = moduleMethodsTuple(m, dummy_uniquer);
pushFunctionToIValues(std::move(exportSet), elements, dummy, dummy_uniquer);
for (const auto& element : elements) {
auto table = element.toTupleRef().elements()[1];
auto row =
table.toTupleRef().elements().at(BYTECODE_INDEX_OPERATOR).toTuple();
TORCH_INTERNAL_ASSERT(
row->elements().at(0).toStringRef() == "operators",
"Expected operators but found ",
row->elements().at(0).toStringRef());
const auto& ops_list = row->elements().at(1).toTupleRef().elements();
for (const auto& op : ops_list) {
const auto& op_item = op.toTupleRef().elements();
TORCH_CHECK(
op_item.size() >= 2,
"There should be either two parts (name and overload name), ",
"or three parts (name, overload name and number of specified args) ",
"for an operator.");
auto opname = op_item[0].toString()->string();
auto overload = op_item[1].toString()->string();
// NOLINTNEXTLINE(performance-inefficient-string-concatenation) // NOLINTNEXTLINE(performance-inefficient-string-concatenation)
opnames.emplace(overload.empty() ? opname : opname + "." + overload); opnames.emplace(
op.overload_name.empty() ? op.name
: op.name + "." + op.overload_name);
} }
} }
} }