mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
[cuDNN][cuDNN V8 API] Always build assuming cuDNN >= 8.0 (#91527)
We've been building with V8 (incl. V8 API) by default for a while now; this PR cleans up some guards for cuDNN < 8.0. CC @ptrblck @ngimel Pull Request resolved: https://github.com/pytorch/pytorch/pull/91527 Approved by: https://github.com/ngimel
This commit is contained in:
committed by
PyTorch MergeBot
parent
4d26903739
commit
4d07ad74f1
@ -407,6 +407,7 @@ cc_library(
|
||||
"@cuda//:cusolver",
|
||||
"@cuda//:nvrtc",
|
||||
"@cudnn",
|
||||
"@cudnn_frontend",
|
||||
],
|
||||
alwayslink = True,
|
||||
)
|
||||
|
@ -195,9 +195,6 @@ cmake_dependent_option(
|
||||
cmake_dependent_option(
|
||||
BUILD_NVFUSER_BENCHMARK "Build C++ binaries for nvfuser benchmarks" OFF
|
||||
"USE_CUDA" OFF)
|
||||
cmake_dependent_option(
|
||||
USE_EXPERIMENTAL_CUDNN_V8_API "Use experimental cuDNN v8 API" ON
|
||||
"USE_CUDNN" OFF)
|
||||
option(USE_FBGEMM "Use FBGEMM (quantized 8-bit server operators)" ON)
|
||||
option(USE_KINETO "Use Kineto profiling library" ON)
|
||||
option(USE_CUPTI_SO "Use CUPTI as a shared library" ON)
|
||||
|
@ -203,6 +203,12 @@ new_local_repository(
|
||||
path = "/usr/",
|
||||
)
|
||||
|
||||
new_local_repository(
|
||||
name = "cudnn_frontend",
|
||||
build_file = "@//third_party:cudnn_frontend.BUILD",
|
||||
path = "third_party/cudnn_frontend/",
|
||||
)
|
||||
|
||||
local_repository(
|
||||
name = "com_github_google_flatbuffers",
|
||||
path = "third_party/flatbuffers",
|
||||
|
@ -305,7 +305,6 @@ struct TORCH_CUDA_CPP_API CTCLossDescriptor
|
||||
void set(cudnnDataType_t datatype) {
|
||||
AT_CUDNN_CHECK(cudnnSetCTCLossDescriptor(mut_desc(), datatype));
|
||||
}
|
||||
#if CUDNN_VERSION >= 7600
|
||||
void setEx(
|
||||
cudnnDataType_t datatype,
|
||||
cudnnLossNormalizationMode_t normMode,
|
||||
@ -313,7 +312,6 @@ struct TORCH_CUDA_CPP_API CTCLossDescriptor
|
||||
AT_CUDNN_CHECK(
|
||||
cudnnSetCTCLossDescriptorEx(mut_desc(), datatype, normMode, gradMode));
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
struct TORCH_CUDA_CPP_API ActivationDescriptor
|
||||
|
@ -59,11 +59,7 @@ cudnnBatchNormMode_t getCudnnBatchNormMode(bool training, at::MemoryFormat memor
|
||||
return CUDNN_BATCHNORM_PER_ACTIVATION;
|
||||
} else if (training && memory_format == at::MemoryFormat::ChannelsLast) {
|
||||
|
||||
#if CUDNN_VERSION >= 7400
|
||||
return CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
|
||||
#else
|
||||
return CUDNN_BATCHNORM_SPATIAL;
|
||||
#endif // CUDNN_VERSION >= 7400
|
||||
|
||||
} else if (training && memory_format == at::MemoryFormat::ChannelsLast3d) {
|
||||
|
||||
@ -152,7 +148,6 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> cudnn_batch_norm(
|
||||
save_mean = at::empty({ num_features }, weight_t.options());
|
||||
save_var = at::empty({ num_features }, weight_t.options());
|
||||
|
||||
#if CUDNN_VERSION >= 7400
|
||||
auto op = CUDNN_BATCHNORM_OPS_BN;
|
||||
size_t workspace_size;
|
||||
AT_CUDNN_CHECK(cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
|
||||
@ -204,22 +199,6 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> cudnn_batch_norm(
|
||||
workspace_size,
|
||||
reserve.data_ptr(),
|
||||
reserve_size));
|
||||
#else
|
||||
reserve = at::empty({0}, input->options().dtype(kByte));
|
||||
AT_CUDNN_CHECK(cudnnBatchNormalizationForwardTraining(
|
||||
handle, mode, &one, &zero,
|
||||
idesc.desc(), input->data_ptr(),
|
||||
idesc.desc(), output->data_ptr(),
|
||||
wdesc.desc(),
|
||||
weight->data_ptr(),
|
||||
bias->data_ptr(),
|
||||
exponential_average_factor,
|
||||
at::maybe_data_ptr(running_mean),
|
||||
at::maybe_data_ptr(running_var),
|
||||
epsilon,
|
||||
save_mean.data_ptr(),
|
||||
save_var.data_ptr()));
|
||||
#endif // CUDNN_VERSION >= 7400
|
||||
} else {
|
||||
reserve = at::empty({0}, input->options().dtype(kByte));
|
||||
// This keeps a consistent output with native_batch_norm
|
||||
@ -317,7 +296,6 @@ std::tuple<Tensor, Tensor, Tensor> cudnn_batch_norm_backward(
|
||||
Constant one(dataType, 1);
|
||||
Constant zero(dataType, 0);
|
||||
|
||||
#if CUDNN_VERSION >= 7400
|
||||
auto op = CUDNN_BATCHNORM_OPS_BN;
|
||||
|
||||
size_t workspace_size;
|
||||
@ -354,19 +332,6 @@ std::tuple<Tensor, Tensor, Tensor> cudnn_batch_norm_backward(
|
||||
workspace_size,
|
||||
reserve->data_ptr(),
|
||||
reserve->numel()));
|
||||
#else
|
||||
AT_CUDNN_CHECK(cudnnBatchNormalizationBackward(
|
||||
handle, mode, &one, &zero, &one, &zero,
|
||||
idesc.desc(), input->data_ptr(),
|
||||
odesc.desc(), grad_output->data_ptr(),
|
||||
idesc.desc(), grad_input_t.data_ptr(),
|
||||
wdesc.desc(), weight->data_ptr(),
|
||||
grad_weight_t.data_ptr(),
|
||||
grad_bias_t.data_ptr(),
|
||||
epsilon,
|
||||
save_mean->data_ptr(),
|
||||
save_var->data_ptr()));
|
||||
#endif // CUDNN_VERSION >= 7400
|
||||
|
||||
return std::tuple<Tensor,Tensor,Tensor>{grad_input_t, grad_weight_t, grad_bias_t};
|
||||
}
|
||||
|
@ -111,7 +111,6 @@ void raw_cudnn_convolution_add_relu_fallback_out(
|
||||
#if AT_CUDNN_ENABLED()
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
|
||||
#if HAS_CUDNN_V8()
|
||||
// v7 functions are preserved here to allow for runtime switching to v7
|
||||
// (e.g., TORCH_CUDNN_V8_API_DISABLED=1).
|
||||
// Note that v7 forward/backward out can have different behavior from the v8
|
||||
@ -149,5 +148,4 @@ void raw_cudnn_convolution_add_relu_out_v7(
|
||||
bool deterministic,
|
||||
bool allow_tf32);
|
||||
#endif
|
||||
#endif
|
||||
}}
|
||||
|
@ -3,7 +3,6 @@
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
#include <ATen/core/Tensor.h>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
@ -60,10 +59,6 @@
|
||||
// with the best algo, under the hood, cudnn will run with the slower kernel
|
||||
// since it sees fastest algorithm combination with a sub optimal mathType.
|
||||
|
||||
// Note [blocklist fft algorithms for strided dgrad]
|
||||
// This is a workaround for a CuDNN bug that gave wrong results in certain strided convolution
|
||||
// gradient setups. Check Issue #16610 for bug details. Bug is there for CUDNN version < 7.5 .
|
||||
|
||||
constexpr size_t operator "" _TiB(unsigned long long n) {
|
||||
return size_t(n) * 1024 * 1024 * 1024 * 1024;
|
||||
}
|
||||
@ -225,15 +220,6 @@ size_t getMaxWorkspaceSize(
|
||||
template<typename perf_t>
|
||||
std::vector<perf_t> getValidAlgorithms(perf_t *perfResults, const ConvolutionArgs& args, int n_algo) {
|
||||
|
||||
// See Note [blocklist fft algorithms for strided dgrad]
|
||||
#if CUDNN_VERSION < 7500
|
||||
bool blocklist = std::is_same<decltype(perfResults[0].algo), cudnnConvolutionBwdDataAlgo_t>::value;
|
||||
int stride_dim = args.input.dim() - 2;
|
||||
blocklist &= std::any_of(std::begin(args.params.stride),
|
||||
std::begin(args.params.stride) + stride_dim,
|
||||
[=](int n){return n != 1;});
|
||||
#endif
|
||||
|
||||
std::vector<perf_t> result;
|
||||
result.reserve(n_algo);
|
||||
for (const auto i : c10::irange(n_algo)) {
|
||||
@ -244,16 +230,6 @@ std::vector<perf_t> getValidAlgorithms(perf_t *perfResults, const ConvolutionArg
|
||||
if (perf.status == CUDNN_STATUS_SUCCESS) {
|
||||
if (!args.params.deterministic || perf.determinism == CUDNN_DETERMINISTIC) {
|
||||
|
||||
// See Note [blocklist fft algorithms for strided dgrad]
|
||||
#if CUDNN_VERSION < 7500
|
||||
bool skip = blocklist;
|
||||
skip &= (static_cast<cudnnConvolutionBwdDataAlgo_t>(perfResults[i].algo) == CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
|
||||
static_cast<cudnnConvolutionBwdDataAlgo_t>(perfResults[i].algo) == CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT);
|
||||
if (skip) {
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
result.push_back(perf);
|
||||
}
|
||||
}
|
||||
@ -493,11 +469,9 @@ public:
|
||||
perfResults[0].mathType = CUDNN_TENSOR_OP_MATH;
|
||||
} else {
|
||||
perfResults[0].mathType = CUDNN_DEFAULT_MATH;
|
||||
#if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8000
|
||||
if (args.params.dataType == CUDNN_DATA_FLOAT && !args.params.allow_tf32) {
|
||||
perfResults[0].mathType = CUDNN_FMA_MATH;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
search::getWorkspaceSize(args, perfResults[0].algo, &(perfResults[0].memory));
|
||||
return perfResults;
|
||||
@ -610,14 +584,10 @@ static inline void split_batch_dim_to_32bit_out(
|
||||
}
|
||||
|
||||
|
||||
#if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8000
|
||||
#define ASSERT_CORRECT_PRECISION(math_type) \
|
||||
if (args.params.dataType == CUDNN_DATA_FLOAT) { \
|
||||
TORCH_INTERNAL_ASSERT(args.params.allow_tf32 || math_type == CUDNN_FMA_MATH); \
|
||||
}
|
||||
#else
|
||||
#define ASSERT_CORRECT_PRECISION(math_type)
|
||||
#endif // CUDNN_VERSION >= 8000
|
||||
|
||||
|
||||
// ---------------------------------------------------------------------
|
||||
@ -672,11 +642,7 @@ void raw_cudnn_convolution_forward_out_32bit(
|
||||
}
|
||||
|
||||
|
||||
#if !HAS_CUDNN_V8()
|
||||
void raw_cudnn_convolution_forward_out(
|
||||
#else
|
||||
void raw_cudnn_convolution_forward_out_v7(
|
||||
#endif
|
||||
const Tensor& output, const Tensor& input, const Tensor& weight,
|
||||
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups,
|
||||
bool benchmark, bool deterministic, bool allow_tf32) {
|
||||
@ -734,11 +700,7 @@ void raw_cudnn_convolution_backward_input_out_32bit(
|
||||
);
|
||||
}
|
||||
|
||||
#if !HAS_CUDNN_V8()
|
||||
void raw_cudnn_convolution_backward_input_out(
|
||||
#else
|
||||
void raw_cudnn_convolution_backward_input_out_v7(
|
||||
#endif
|
||||
const at::Tensor& grad_input,
|
||||
const at::Tensor& grad_output,
|
||||
const at::Tensor& weight,
|
||||
@ -797,11 +759,7 @@ void raw_cudnn_convolution_backward_weight_out_32bit(
|
||||
);
|
||||
}
|
||||
|
||||
#if !HAS_CUDNN_V8()
|
||||
void raw_cudnn_convolution_backward_weight_out(
|
||||
#else
|
||||
void raw_cudnn_convolution_backward_weight_out_v7(
|
||||
#endif
|
||||
const Tensor& grad_weight, const Tensor& grad_output, const Tensor& input,
|
||||
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups,
|
||||
bool benchmark, bool deterministic, bool allow_tf32) {
|
||||
@ -853,12 +811,7 @@ void raw_cudnn_convolution_backward_weight_out_v7(
|
||||
TORCH_INTERNAL_ASSERT(false, "This case should not be dispatched to cuDNN.");
|
||||
}
|
||||
|
||||
#if !HAS_CUDNN_V8()
|
||||
void raw_cudnn_convolution_add_relu_out(
|
||||
#else
|
||||
void raw_cudnn_convolution_add_relu_out_v7(
|
||||
#endif
|
||||
|
||||
const Tensor& output,
|
||||
const Tensor& input,
|
||||
const Tensor& weight,
|
||||
|
@ -4,10 +4,6 @@
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
|
||||
#if HAS_CUDNN_V8()
|
||||
|
||||
#include <ATen/cudnn/cudnn-wrapper.h>
|
||||
|
||||
#include <c10/macros/Macros.h>
|
||||
@ -787,5 +783,4 @@ void raw_cudnn_convolution_add_relu_out(
|
||||
|
||||
}} // at::native
|
||||
|
||||
#endif // HAS_CUDNN_V8
|
||||
#endif // AT_CUDNN_ENABLED
|
||||
|
@ -18,7 +18,7 @@
|
||||
#include <ATen/ops/empty_like.h>
|
||||
#endif
|
||||
|
||||
#if (!AT_CUDNN_ENABLED()) || (CUDNN_VERSION < 7600)
|
||||
#if (!AT_CUDNN_ENABLED())
|
||||
|
||||
namespace at { namespace native {
|
||||
|
||||
|
@ -2,8 +2,6 @@
|
||||
#include <ATen/cuda/CUDAConfig.h> // for the definition of AT_CUDNN_ENABLED
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
#if HAS_CUDNN_V8()
|
||||
|
||||
#include <ATen/core/TensorBase.h>
|
||||
#include <ATen/core/TensorBody.h>
|
||||
@ -259,6 +257,5 @@ TORCH_LIBRARY_IMPL(quantized, QuantizedCUDA, m) {
|
||||
} // namespace native
|
||||
} // namespace at
|
||||
|
||||
#endif // HAS_CUDNN_V8
|
||||
#endif // AT_CUDNN_ENABLED
|
||||
#endif // USE_CUDA
|
||||
|
@ -3,11 +3,8 @@
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
#include <c10/util/ArrayRef.h>
|
||||
|
||||
#if HAS_CUDNN_V8()
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
#include <ATen/cudnn/Handle.h>
|
||||
@ -432,6 +429,5 @@ TORCH_LIBRARY_IMPL(quantized, QuantizedCUDA, m) {
|
||||
} // namespace at
|
||||
|
||||
|
||||
#endif // HAS_CUDNN_V8
|
||||
#endif // AT_CUDNN_ENABLED
|
||||
#endif // USE_CUDA
|
||||
|
@ -3,10 +3,6 @@
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
|
||||
#if HAS_CUDNN_V8()
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <torch/library.h>
|
||||
#include <ATen/native/quantized/cpu/QuantUtils.h>
|
||||
@ -212,6 +208,5 @@ TORCH_LIBRARY_IMPL(quantized, QuantizedCUDA, m) {
|
||||
} // namespace native
|
||||
} // namespace at
|
||||
|
||||
#endif // HAS_CUDNN_V8
|
||||
#endif // AT_CUDNN_ENABLED
|
||||
#endif // USE_CUDA
|
||||
|
@ -3,10 +3,6 @@
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
|
||||
#if HAS_CUDNN_V8()
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/native/quantized/cudnn/utils.h>
|
||||
#include <ATen/native/quantized/PackedParams.h>
|
||||
@ -23,6 +19,5 @@ std::tuple<at::Tensor, c10::optional<at::Tensor>> PackedConvWeightCudnn<
|
||||
template std::tuple<at::Tensor, c10::optional<at::Tensor>> PackedConvWeightCudnn<
|
||||
2>::unpack();
|
||||
|
||||
#endif // HAS_CUDNN_V8
|
||||
#endif // AT_CUDNN_ENABLED
|
||||
#endif // USE_CUDA
|
||||
|
@ -3,11 +3,8 @@
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
#include <c10/util/ArrayRef.h>
|
||||
|
||||
#if HAS_CUDNN_V8()
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
#include <ATen/cudnn/Handle.h>
|
||||
@ -367,6 +364,5 @@ TORCH_LIBRARY_IMPL(quantized, QuantizedCUDA, m) {
|
||||
} // namespace at
|
||||
|
||||
|
||||
#endif // HAS_CUDNN_V8
|
||||
#endif // AT_CUDNN_ENABLED
|
||||
#endif // USE_CUDA
|
||||
|
@ -3,10 +3,6 @@
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
|
||||
#if HAS_CUDNN_V8()
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <torch/library.h>
|
||||
#include <ATen/native/quantized/cudnn/utils.h>
|
||||
@ -58,6 +54,5 @@ TORCH_LIBRARY_IMPL(quantized, QuantizedCUDA, m) {
|
||||
} // namespace native
|
||||
} // namespace at
|
||||
|
||||
#endif // HAS_CUDNN_V8
|
||||
#endif // AT_CUDNN_ENABLED
|
||||
#endif // USE_CUDA
|
||||
|
@ -3,10 +3,6 @@
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
|
||||
#if HAS_CUDNN_V8()
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/native/quantized/cudnn/utils.h>
|
||||
#include <ATen/native/quantized/PackedParams.h>
|
||||
@ -18,6 +14,5 @@ std::tuple<at::Tensor, c10::optional<at::Tensor>> PackedLinearWeightCudnn::unpac
|
||||
return std::tuple<at::Tensor, c10::optional<at::Tensor>>{orig_weight, bias_};
|
||||
}
|
||||
|
||||
#endif // HAS_CUDNN_V8
|
||||
#endif // AT_CUDNN_ENABLED
|
||||
#endif // USE_CUDA
|
||||
|
@ -3,7 +3,6 @@
|
||||
#include <ATen/cuda/CUDAConfig.h> // for the definition of AT_CUDNN_ENABLED
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
#include <ATen/cudnn/Descriptors.h>
|
||||
#include <ATen/cudnn/Handle.h>
|
||||
@ -54,7 +53,6 @@ Tensor adaptive_avg_pool2d_quantized_cuda(
|
||||
// TODO: renable these cudnn preprocessors like quantized_max_pool2d_cudnn below when we implement this function with cudnn
|
||||
#ifdef USE_CUDA
|
||||
// #if AT_CUDNN_ENABLED()
|
||||
// #if HAS_CUDNN_V8()
|
||||
// TODO: limit this to per tensor quantized tensors for now, though should be easy to adapt
|
||||
// to per channel quantized tensors
|
||||
TORCH_CHECK(input.qscheme() == at::kPerTensorAffine, "adaptive_avg_pool2d_quantized_cuda oonly supports per tensor quantized tensors");
|
||||
@ -91,7 +89,6 @@ Tensor quantized_max_pool2d_cudnn(
|
||||
bool ceil_mode) {
|
||||
#ifdef USE_CUDA
|
||||
#if AT_CUDNN_ENABLED()
|
||||
#if HAS_CUDNN_V8()
|
||||
check_maxpool2d_params(
|
||||
kernel_size,
|
||||
stride,
|
||||
@ -207,10 +204,6 @@ Tensor quantized_max_pool2d_cudnn(
|
||||
|
||||
// recall we casted our input and output to 4D if qx was 3D, so we recast it back to 3D prior to returning
|
||||
return (ndim == 3 ? qy.view(std::vector<int64_t>(output_shape.begin() + 1, output_shape.end())) : qy);
|
||||
#else // HAS_CUDNN_V8()
|
||||
AT_ERROR("at::native::quantized_max_pool2d_cudnn: ATen not compiled with cuDNN v8 support");
|
||||
return Tensor{}; // never reached, placates the compiler
|
||||
#endif // HAS_CUDNN_V8()
|
||||
#else // AT_CUDNN_ENABLED()
|
||||
AT_ERROR("at::native::quantized_max_pool2d_cudnn: ATen not compiled with cuDNN support");
|
||||
return Tensor{}; // never reached, placates the compiler
|
||||
|
@ -8,10 +8,6 @@ This file contains some of the auxiliary functions used by both Conv.cpp & Linea
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
|
||||
#include <ATen/native/cudnn/Macros.h>
|
||||
|
||||
#if HAS_CUDNN_V8()
|
||||
|
||||
#include <ATen/cudnn/Types.h>
|
||||
#include <ATen/Tensor.h>
|
||||
#include <ATen/native/quantized/PackedParams.h>
|
||||
@ -354,6 +350,5 @@ cudnn_frontend::ExecutionPlan get_execplan_from_heuristics_else_fall_back(cudnn_
|
||||
} // anonymous
|
||||
} // cudnn_utils
|
||||
|
||||
#endif // HAS_CUDNN_V8
|
||||
#endif // AT_CUDNN_ENABLED
|
||||
#endif // USE_CUDA
|
||||
|
@ -1393,12 +1393,6 @@ elseif(USE_ROCM)
|
||||
target_compile_definitions(torch_hip PRIVATE "-DTORCH_HIP_BUILD_MAIN_LIB")
|
||||
endif()
|
||||
|
||||
if(USE_EXPERIMENTAL_CUDNN_V8_API)
|
||||
if(USE_CUDA)
|
||||
target_compile_definitions(torch_cuda PRIVATE "-DUSE_EXPERIMENTAL_CUDNN_V8_API")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set(EXPERIMENTAL_SINGLE_THREAD_POOL "0" CACHE STRING
|
||||
"Experimental option to use a single thread pool for inter- and intra-op parallelism")
|
||||
if("${EXPERIMENTAL_SINGLE_THREAD_POOL}")
|
||||
|
@ -77,7 +77,6 @@ function(caffe2_print_configuration_summary)
|
||||
message(STATUS " Split CUDA : ${BUILD_SPLIT_CUDA}")
|
||||
message(STATUS " CUDA static link : ${CAFFE2_STATIC_LINK_CUDA}")
|
||||
message(STATUS " USE_CUDNN : ${USE_CUDNN}")
|
||||
message(STATUS " USE_EXPERIMENTAL_CUDNN_V8_API: ${USE_EXPERIMENTAL_CUDNN_V8_API}")
|
||||
message(STATUS " CUDA version : ${CUDA_VERSION}")
|
||||
message(STATUS " USE_FLASH_ATTENTION : ${USE_FLASH_ATTENTION}")
|
||||
if(${USE_CUDNN})
|
||||
|
22
third_party/cudnn_frontend.BUILD
vendored
Normal file
22
third_party/cudnn_frontend.BUILD
vendored
Normal file
@ -0,0 +1,22 @@
|
||||
# Adopted from: https://github.com/tensorflow/tensorflow/blob/master/third_party/cudnn_frontend.BUILD
|
||||
|
||||
# Description:
|
||||
# The cuDNN Frontend API is a C++ header-only library that demonstrates how
|
||||
# to use the cuDNN C backend API.
|
||||
|
||||
load("@rules_cc//cc:defs.bzl", "cc_library")
|
||||
|
||||
package(
|
||||
default_visibility = ["//visibility:public"],
|
||||
)
|
||||
|
||||
licenses(["notice"]) # MIT
|
||||
|
||||
exports_files(["LICENSE.txt"])
|
||||
|
||||
cc_library(
|
||||
name = "cudnn_frontend",
|
||||
hdrs = glob(["include/**"]),
|
||||
includes = ["include/"],
|
||||
include_prefix = "third_party/cudnn_frontend",
|
||||
)
|
@ -150,10 +150,6 @@ if(USE_ROCM)
|
||||
list(APPEND TORCH_PYTHON_INCLUDE_DIRECTORIES ${roctracer_INCLUDE_DIRS})
|
||||
endif()
|
||||
|
||||
if(USE_EXPERIMENTAL_CUDNN_V8_API)
|
||||
list(APPEND TORCH_PYTHON_COMPILE_DEFINITIONS USE_EXPERIMENTAL_CUDNN_V8_API)
|
||||
endif()
|
||||
|
||||
if(USE_CUDNN OR USE_ROCM)
|
||||
list(APPEND TORCH_PYTHON_SRCS
|
||||
${TORCH_SRC_DIR}/csrc/cuda/shared/cudnn.cpp
|
||||
|
@ -1146,12 +1146,7 @@ PyObject* THCPModule_setBenchmarkLimitCuDNN(PyObject* _unused, PyObject* arg) {
|
||||
"cuDNN Benchmark limit is not supported in MIOpen and will have no effect.");
|
||||
#endif
|
||||
#if AT_CUDNN_ENABLED()
|
||||
#if HAS_CUDNN_V8()
|
||||
at::globalContext().setBenchmarkLimitCuDNN(benchmark_limit);
|
||||
#else
|
||||
TORCH_WARN_ONCE(
|
||||
"cuDNN Benchmark limit is not supported with cuDNN v7 API and will have no effect.");
|
||||
#endif
|
||||
#endif
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
Reference in New Issue
Block a user