mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[BE] better type annotation for torch.types
(#129559)
Closes #129525 - #129525 Pull Request resolved: https://github.com/pytorch/pytorch/pull/129559 Approved by: https://github.com/ezyang
This commit is contained in:
committed by
PyTorch MergeBot
parent
76710d4f95
commit
4c1dd13ba3
@ -1,7 +1,5 @@
|
||||
# mypy: allow-untyped-defs
|
||||
|
||||
import builtins
|
||||
|
||||
# In some cases, these basic types are shadowed by corresponding
|
||||
# top-level values. The underscore variants let us refer to these
|
||||
# types. See https://github.com/python/mypy/issues/4146 for why these
|
||||
@ -14,100 +12,114 @@ from builtins import ( # noqa: F401
|
||||
int as _int,
|
||||
str as _str,
|
||||
)
|
||||
from typing import Any, List, Optional, Sequence, Tuple, TYPE_CHECKING, Union
|
||||
from typing import Any, Dict, List, Sequence, Tuple, TYPE_CHECKING, Union
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
import torch
|
||||
from torch import SymBool, SymFloat, SymInt
|
||||
# `as` imports have better static analysis support than assignment `ExposedType: TypeAlias = HiddenType`
|
||||
from torch import ( # noqa: F401
|
||||
device as _device,
|
||||
DispatchKey as DispatchKey,
|
||||
dtype as _dtype,
|
||||
layout as _layout,
|
||||
qscheme as _qscheme,
|
||||
Size as Size,
|
||||
SymBool as SymBool,
|
||||
SymFloat as SymFloat,
|
||||
SymInt as SymInt,
|
||||
Tensor as Tensor,
|
||||
)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from torch.autograd.graph import GradientEdge
|
||||
|
||||
|
||||
__all__ = ["Number", "Device", "Storage"]
|
||||
|
||||
# Convenience aliases for common composite types that we need
|
||||
# to talk about in PyTorch
|
||||
|
||||
_TensorOrTensors = Union[torch.Tensor, Sequence[torch.Tensor]]
|
||||
_TensorOrTensorsOrGradEdge = Union[
|
||||
torch.Tensor,
|
||||
Sequence[torch.Tensor],
|
||||
_TensorOrTensors: TypeAlias = Union[Tensor, Sequence[Tensor]] # noqa: PYI047
|
||||
_TensorOrTensorsOrGradEdge: TypeAlias = Union[ # noqa: PYI047
|
||||
Tensor,
|
||||
Sequence[Tensor],
|
||||
"GradientEdge",
|
||||
Sequence["GradientEdge"],
|
||||
]
|
||||
|
||||
_dtype = torch.dtype
|
||||
_device = torch.device
|
||||
_qscheme = torch.qscheme
|
||||
_layout = torch.layout
|
||||
_size = Union[torch.Size, List[builtins.int], Tuple[builtins.int, ...]]
|
||||
_symsize = Union[torch.Size, Sequence[Union[_int, SymInt]]]
|
||||
_dispatchkey = Union[builtins.str, torch._C.DispatchKey]
|
||||
_size: TypeAlias = Union[Size, List[int], Tuple[int, ...]] # noqa: PYI042,PYI047
|
||||
_symsize: TypeAlias = Union[Size, Sequence[Union[int, SymInt]]] # noqa: PYI042,PYI047
|
||||
_dispatchkey: TypeAlias = Union[str, DispatchKey] # noqa: PYI042,PYI047
|
||||
|
||||
# int or SymInt
|
||||
IntLikeType = Union[_int, torch.SymInt]
|
||||
IntLikeType: TypeAlias = Union[int, SymInt]
|
||||
# float or SymFloat
|
||||
FloatLikeType: TypeAlias = Union[float, SymFloat]
|
||||
# bool or SymBool
|
||||
BoolLikeType: TypeAlias = Union[bool, SymBool]
|
||||
|
||||
py_sym_types = (SymInt, SymFloat, SymBool)
|
||||
PySymType = Union[SymInt, SymFloat, SymBool]
|
||||
PySymType: TypeAlias = Union[SymInt, SymFloat, SymBool]
|
||||
|
||||
# Meta-type for "numeric" things; matches our docs
|
||||
Number = Union[builtins.int, builtins.float, builtins.bool]
|
||||
Number: TypeAlias = Union[int, float, bool]
|
||||
|
||||
# Meta-type for "device-like" things. Not to be confused with 'device' (a
|
||||
# literal device object). This nomenclature is consistent with PythonArgParser.
|
||||
# None means use the default device (typically CPU)
|
||||
Device = Optional[Union[_device, builtins.str, builtins.int]]
|
||||
del Optional
|
||||
Device: TypeAlias = Union[_device, str, int, None]
|
||||
|
||||
|
||||
# Storage protocol implemented by ${Type}StorageBase classes
|
||||
|
||||
|
||||
class Storage:
|
||||
_cdata: _int
|
||||
device: torch.device
|
||||
dtype: torch.dtype
|
||||
_torch_load_uninitialized: _bool
|
||||
_cdata: int
|
||||
device: _device
|
||||
dtype: _dtype
|
||||
_torch_load_uninitialized: bool
|
||||
|
||||
def __deepcopy__(self, memo: dict) -> "Storage":
|
||||
def __deepcopy__(self, memo: Dict[int, Any]) -> "Storage":
|
||||
raise NotImplementedError
|
||||
|
||||
def _new_shared(self, size: _int) -> "Storage":
|
||||
def _new_shared(self, size: int) -> "Storage":
|
||||
raise NotImplementedError
|
||||
|
||||
def _write_file(
|
||||
self,
|
||||
f: Any,
|
||||
is_real_file: _bool,
|
||||
save_size: _bool,
|
||||
element_size: _int,
|
||||
is_real_file: bool,
|
||||
save_size: bool,
|
||||
element_size: int,
|
||||
) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
def element_size(self) -> _int:
|
||||
def element_size(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
def is_shared(self) -> _bool:
|
||||
def is_shared(self) -> bool:
|
||||
raise NotImplementedError
|
||||
|
||||
def share_memory_(self) -> "Storage":
|
||||
raise NotImplementedError
|
||||
|
||||
def nbytes(self) -> _int:
|
||||
def nbytes(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
def cpu(self) -> "Storage":
|
||||
raise NotImplementedError
|
||||
|
||||
def data_ptr(self) -> _int:
|
||||
def data_ptr(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
def from_file(
|
||||
self,
|
||||
filename: _str,
|
||||
shared: _bool = False,
|
||||
nbytes: _int = 0,
|
||||
filename: str,
|
||||
shared: bool = False,
|
||||
nbytes: int = 0,
|
||||
) -> "Storage":
|
||||
raise NotImplementedError
|
||||
|
||||
def _new_with_file(self, f: Any, element_size: _int) -> "Storage":
|
||||
def _new_with_file(
|
||||
self,
|
||||
f: Any,
|
||||
element_size: int,
|
||||
) -> "Storage":
|
||||
raise NotImplementedError
|
||||
|
Reference in New Issue
Block a user